scholarly journals Gut microbiota-mediated lysophosphatidylcholine generation promotes colitis in intestinal epithelium-specific Fut2 deficiency

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Xuelian Tang ◽  
Weijun Wang ◽  
Gaichao Hong ◽  
Caihan Duan ◽  
Siran Zhu ◽  
...  

Abstract Background and aims Previous study disclosed Fucosyltransferase 2 (Fut2) gene as a IBD risk locus. This study aimed to explore the mechanism of Fut2 in IBD susceptibility and to propose a new strategy for the treatment of IBD. Methods Intestinal epithelium-specific Fut2 knockout (Fut2△IEC) mice was used. Colitis was induced by dextran sulfate sodium (DSS). The composition and diversity of gut microbiota were assessed via 16S rRNA analysis and the metabolomic findings was obtained from mice feces via metabolite profiling. The fecal microbiota transplantation (FMT) experiment was performed to confirm the association of gut microbiota and LPC. WT mice were treated with Lysophosphatidylcholine (LPC) to verify its impact on colitis. Results The expression of Fut2 and α-1,2-fucosylation in colonic tissues were decreased in patients with UC (UC vs. control, P = 0.036) and CD (CD vs. control, P = 0.031). When treated with DSS, in comparison to WT mice, more severe intestinal inflammation and destructive barrier functions in Fut2△IEC mice was noted. Lower gut microbiota diversity was observed in Fut2△IEC mice compared with WT mice (p < 0.001). When exposed to DSS, gut bacterial diversity and composition altered obviously in Fut2△IEC mice and the fecal concentration of LPC was increased. FMT experiment revealed that mice received the fecal microbiota from Fut2△IEC mice exhibited more severe colitis and higher fecal LPC concentration. Correlation analysis showed that the concentration of LPC was positively correlated with four bacteria—Escherichia, Bilophila, Enterorhabdus and Gordonibacter. Furthermore, LPC was proved to promote the release of pro-inflammatory cytokines and damage epithelial barrier in vitro and in vivo. Conclusion Fut2 and α-1,2-fucosylation in colon were decreased not only in CD but also in UC patients. Gut microbiota in Fut2△IEC mice is altered structurally and functionally, promoting generation of LPC which was proved to promote inflammation and damage epithelial barrier.

Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2298
Author(s):  
Gang Wang ◽  
Shuo Huang ◽  
Shuang Cai ◽  
Haitao Yu ◽  
Yuming Wang ◽  
...  

Lactobacillus reuteri, a commensal intestinal bacteria, has various health benefits including the regulation of immunity and intestinal microbiota. We examined whether L. reuteri I5007 could protect mice against colitis in ameliorating inflammation, modulating microbiota, and metabolic composition. In vitro, HT-29 cells were cultured with L. reuteri I5007 or lipopolysaccharide treatment under three different conditions, i.e., pre-, co- (simultaneous), and posttreatment. Pretreatment with L. reuteri I5007 effectively relieves inflammation in HT-29 cells challenged with lipopolysaccharide. In vivo, mice were given L. reuteri I5007 by gavage throughout the study, starting one week prior to dextran sulfate sodium (DSS) treatment for one week followed by two days without DSS. L. reuteri I5007 improved DSS-induced colitis, which was confirmed by reduced weight loss, colon length shortening, and histopathological damage, restored the mucus layer, as well as reduced pro-inflammatory cytokines levels. Analysis of 16S rDNA sequences and metabolome demonstrates that L. reuteri I5007 significantly alters colonic microbiota and metabolic structural and functional composition. Overall, the results demonstrate that L. reuteri I5007 pretreatment could effectively alleviate intestinal inflammation by regulating immune responses and altering the composition of gut microbiota structure and function, as well as improving metabolic disorders in mice with colitis.


2019 ◽  
Vol 6 (4) ◽  
pp. 91 ◽  
Author(s):  
Lucia Boeri ◽  
Luca Izzo ◽  
Lorenzo Sardelli ◽  
Marta Tunesi ◽  
Diego Albani ◽  
...  

The liver is a key organ that can communicate with many other districts of the human body. In the last few decades, much interest has focused on the interaction between the liver and the gut microbiota, with their reciprocal influence on biosynthesis pathways and the integrity the intestinal epithelial barrier. Dysbiosis or liver disorders lead to0 epithelial barrier dysfunction, altering membrane permeability to toxins. Clinical and experimental evidence shows that the permeability hence the delivery of neurotoxins such as LPS, ammonia and salsolinol contribute to neurological disorders. These findings suggested multi-organ communication between the gut microbiota, the liver and the brain. With a view to in vitro modeling this liver-based multi-organ communication, we describe the latest advanced liver-on-a-chip devices and discuss the need for new organ-on-a-chip platforms for in vitro modeling the in vivo multi-organ connection pathways in physiological and pathological situations.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 517 ◽  
Author(s):  
Claudia Burrello ◽  
Maria Rita Giuffrè ◽  
Angeli Dominique Macandog ◽  
Angelica Diaz-Basabe ◽  
Fulvia Milena Cribiù ◽  
...  

Different gastrointestinal disorders, including inflammatory bowel diseases (IBD), have been linked to alterations of the gut microbiota composition, namely dysbiosis. Fecal microbiota transplantation (FMT) is considered an encouraging therapeutic approach for ulcerative colitis patients, mostly as a consequence of normobiosis restoration. We recently showed that therapeutic effects of FMT during acute experimental colitis are linked to functional modulation of the mucosal immune system and of the gut microbiota composition. Here we analysed the effects of therapeutic FMT administration during chronic experimental colitis, a condition more similar to that of IBD patients, on immune-mediated mucosal inflammatory pathways. Mucus and feces from normobiotic donors were orally administered to mice with established chronic Dextran Sodium Sulphate (DSS)-induced colitis. Immunophenotypes and functions of infiltrating colonic immune cells were evaluated by cytofluorimetric analysis. Compositional differences in the intestinal microbiome were analyzed by 16S rRNA sequencing. Therapeutic FMT in mice undergoing chronic intestinal inflammation was capable to decrease colonic inflammation by modulating the expression of pro-inflammatory genes, antimicrobial peptides, and mucins. Innate and adaptive mucosal immune cells manifested a reduced pro-inflammatory profile in FMT-treated mice. Finally, restoration of a normobiotic core ecology contributed to the resolution of inflammation. Thus, FMT is capable of controlling chronic intestinal experimental colitis by inducing a concerted activation of anti-inflammatory immune pathways, mechanistically supporting the positive results of FMT treatment reported in ulcerative colitis patients.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 137-138
Author(s):  
X Bai ◽  
G De Palma ◽  
J Lu ◽  
S M Collins ◽  
P Bercik

Abstract Background Increasing evidence suggests that gut microbiota play a key role in gastrointestinal (GI) tract function. We have previously shown that fecal microbiota transplantation diarrhea predominant IBS patients into germ-free mice induces faster GI transit, increased permeability and innate immune activation. However, it is unknown whether gut dysfunction is induced by microbiota from patients with chronic constipation. Aims Here, we investigated the role of the intestinal microbiota in the expression of severe slow transit constipation in a patient with previous C difficile infection and extensive antibiotic exposure. Methods Germ-free (GF) mice (14 weeks old) were gavaged with diluted fecal content from the patient with constipation (PA) or a sex and age-matched healthy control (HC). 12 weeks later, we assessed gut motility and GI transit using videofluoroscopy and a bead expulsion test.. We then investigated intestinal and colonic smooth muscle isometric contraction in vitro using electric field stimulation (EFS), and acetylcholine (Ach) release was assessed by superfusion using [3H] choline. Histological changes were evaluated by H&E and immunohistochemistry. Results Mice with PA microbiota had faster whole GI transit (score 18.9 ± 0.9 (N=9) than mice with HC microbiota (15.4 ± 1.0, N=10, p=0.032), with markers located mainly in the distal small bowel and cecum. However, bead expulsion from the colon was significantly longer in PA mice (420.8 s ± 124.6 s, N=9) than in HC mice (82.6 s ± 20.0 s, N=10, p=0.026). This delayed colonic transit was likely due to colonic retroperistalsis visualized videofluoroscopically by retrograde flow of barium in the right colon of PA mice. There was no difference between the two groups in small intestinal or colonic tissues in Ach release or contractility induced by carbachol or KCl,. EFS caused transient biphasic relaxation and contraction in small intestine and colon, with the colonic contraction being stronger in the PA group. Microscopic tissue analysis showed disruption of the interstitial cells of Cajal (ICC) network and increased lymphocyte infiltration in colonic mucosa and submucosa in PA mice. Conclusions These results indicate that the microbiota is a driver of delayed colonic transit in a patient whose constipation started following extensive antibiotic exposure for C. difficile infection. The observed dysmotility pattern was not due to lower muscle contractility but likely caused by immune mediated changes in the ICC network. Funding Agencies CIHR


2016 ◽  
Vol 29 (2) ◽  
pp. 234-248 ◽  
Author(s):  
Katherine Gil-Cardoso ◽  
Iris Ginés ◽  
Montserrat Pinent ◽  
Anna Ardévol ◽  
Mayte Blay ◽  
...  

AbstractDiet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao-Ming Xu ◽  
Hong-Li Huang ◽  
Jing Xu ◽  
Jie He ◽  
Chong Zhao ◽  
...  

Fecal microbiota transplantation (FMT) can inhibit the progression of ulcerative colitis (UC). However, how FMT modulates the gut microbiota and which biomarker is valuable for evaluating the efficacy of FMT have not been clarified. This study aimed to determine the changes in the gut microbiota and their relationship with butyric acid following FMT for UC. Fecal microbiota (FM) was isolated from healthy individuals or mice and transplanted into 12 UC patients or colitis mice induced by dextran sulfate sodium (DSS). Their clinical colitis severities were monitored. Their gut microbiota were analyzed by 16S sequencing and bioinformatics. The levels of fecal short-chain fatty acids (SCFAs) from five UC patients with recurrent symptoms after FMT and individual mice were quantified by liquid chromatography–mass spectrometry (LC–MS). The impact of butyric acid on the abundance and diversity of the gut microbiota was tested in vitro. The effect of the combination of butyric acid-producing bacterium and FMT on the clinical responses of 45 UC patients was retrospectively analyzed. Compared with that in the controls, the FMT significantly increased the abundance of butyric acid-producing bacteria and fecal butyric acid levels in UC patients. The FMT significantly increased the α-diversity, changed gut microbial structure, and elevated fecal butyric acid levels in colitis mice. Anaerobic culture with butyrate significantly increased the α-diversity of the gut microbiota from colitis mice and changed their structure. FMT combination with Clostridium butyricum-containing probiotics significantly prolonged the UC remission in the clinic. Therefore, fecal butyric acid level may be a biomarker for evaluating the efficacy of FMT for UC, and addition of butyrate-producing bacteria may prolong the therapeutic effect of FMT on UC by changing the gut microbiota.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 577 ◽  
Author(s):  
Benoît Foligné ◽  
Coline Plé ◽  
Marie Titécat ◽  
Arnaud Dendooven ◽  
Aurélien Pagny ◽  
...  

An original immuno-regulatory strategy against inflammatory bowel diseases based on the use of 28 kDa glutathione S-transferase (P28GST), a unique schistosome protein, was recently proposed. Improvement of intestinal inflammation occurs through restoration of the immunological balance between pro-inflammatory T-helper 1 (Th1) responses and both T-helper 2 (Th2) and regulatory responses. However, detailed mechanisms explaining how P28GST prevents colitis and promotes gut homeostasis remain unknown. Considering the complex interplay between the adaptive and innate immune system and the intestinal microbiota, we raised the question of the possible role of the microbial ecosystem in the anti-inflammatory effects mediated by the helminth-derived P28GST protein. We first analyzed, by 16S rRNA sequencing, the bacterial profiles of mice fecal microbiota at several time points of the P28GST-immunomodulation period prior to trinitrobenzene sulfonic acid (TNBS)-colitis. The influence of gut microbiota in the P28GST-mediated anti-inflammatory effects was then assessed by fecal microbiota transplantation experiments from P28GST-immunized mice to either conventional or microbiota depleted naïve recipient mice. Finally, the experimental data were supplemented by the temporal fecal microbiota compositions of P28GST-treated Crohn’s disease patients from a pilot clinical study (NCT02281916). The P28GST administration slightly modulated the diversity and composition of mouse fecal microbiota while it significantly reduced experimental colitis in mice. Fecal microbiota transplantation experiments failed to restore the P28GST-induced anti-inflammatory effects. In Crohn’s disease patients, P28GST also induced slight changes in their overall fecal bacterial composition. Collectively, these results provide key elements in both the anti-inflammatory mechanisms and the safe therapeutic use of immunomodulation with such promising helminth-derived molecules.


2020 ◽  
Vol 117 (35) ◽  
pp. 21536-21545 ◽  
Author(s):  
Graham J. Britton ◽  
Eduardo J. Contijoch ◽  
Matthew P. Spindler ◽  
Varun Aggarwala ◽  
Belgin Dogan ◽  
...  

The building evidence for the contribution of microbiota to human disease has spurred an effort to develop therapies that target the gut microbiota. This is particularly evident in inflammatory bowel diseases (IBDs), where clinical trials of fecal microbiota transplantation have shown some efficacy. To aid the development of novel microbiota-targeted therapies and to better understand the biology underpinning such treatments, we have used gnotobiotic mice to model microbiota manipulations in the context of microbiotas from humans with inflammatory bowel disease. Mice colonized with IBD donor-derived microbiotas exhibit a stereotypical set of phenotypes, characterized by abundant mucosal Th17 cells, a deficit in the tolerogenic RORγt+regulatory T (Treg) cell subset, and susceptibility to disease in colitis models. Transplanting healthy donor-derived microbiotas into mice colonized with human IBD microbiotas led to induction of RORγt+Treg cells, which was associated with an increase in the density of the microbiotas following transplant. Microbiota transplant reduced gut Th17 cells in mice colonized with a microbiota from a donor with Crohn’s disease. By culturing strains from this microbiota and screening them in vivo, we identified a specific strain that potently induces Th17 cells. Microbiota transplants reduced the relative abundance of this strain in the gut microbiota, which was correlated with a reduction in Th17 cells and protection from colitis.


Author(s):  
Roberto Manzini ◽  
Marlene Schwarzfischer ◽  
Anna Bircher ◽  
Anna Niechcial ◽  
Stephan R Vavricka ◽  
...  

Abstract Background The rise in the prevalence of inflammatory bowel diseases in the past decades coincides with changes in nutritional habits, such as adaptation of a Western diet. However, it is largely unknown how certain nutritional habits, such as energy drink consumption, affect intestinal inflammation. Here, we assessed the effect of energy drink supplementation on the development of intestinal inflammation in vitro and in vivo. Methods HT-29 and T84 intestinal epithelial cells and THP-1 monocytic cells were treated with IFNγ in presence or absence of different concentrations of an energy drink. Colitis was induced in C57BL/6 mice by addition of dextran sodium sulfate (DSS) to drinking water with or without supplementation of the energy drink. Results Energy drink supplementation caused a dose-dependent decrease in IFNγ-induced epithelial barrier permeability, which was accompanied by upregulation of the pore-forming protein claudin-2. Administration of the energy drink reduced secretion of the pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α from HT-29, T84, and THP-1 cells. In vivo, energy drink administration reduced clinical symptoms of DSS-induced colitis and epithelial barrier permeability. Endoscopic and histologic colitis scores and expression of pro-inflammatory cytokines were significantly reduced by energy drink co-administration. Conclusion Energy drink consumption seems to exert an unexpected anti-inflammatory effect in vitro and in vivo in our experimental setting. However, our experimental approach focuses on intestinal inflammation and neglects additional effects of energy drink consumption on the body (eg, on metabolism or sleep). Therefore, the translation of our findings into the human situation must be taken with caution.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Kaitlyn Oliphant ◽  
Kyla Cochrane ◽  
Kathleen Schroeter ◽  
Michelle C. Daigneault ◽  
Sandi Yen ◽  
...  

ABSTRACT Fecal microbiota transplantation (FMT) is a proposedly useful strategy for the treatment of gastrointestinal (GI) disorders through remediation of the patient gut microbiota. However, its therapeutic success has been variable, necessitating research to uncover mechanisms that improve patient response. Antibiotic pretreatment has been proposed as one method to enhance the success rate by increasing niche availability for introduced species. Several limitations hinder exploring this hypothesis in clinical studies, such as deleterious side effects and the development of antimicrobial resistance in patients. Thus, the purpose of this study was to evaluate the use of an in vitro, bioreactor-based, colonic ecosystem model as a form of preclinical testing by determining how pretreatment with the antibiotic rifaximin influenced engraftment of bacterial strains sourced from a healthy donor into an ulcerative colitis-derived defined microbial community. Distinct species integrated under the pretreated and untreated conditions, with the relative rifaximin resistance of the microbial strains being an important influencer. However, both conditions resulted in the integration of taxa from Clostridium clusters IV and XIVa, a concomitant reduction of Proteobacteria, and similar decreases in metabolites associated with poor health status. Our results agree with the findings of similar research in the clinic by others, which observed no difference in primary patient outcomes whether or not patients were given rifaximin prior to FMT. We therefore conclude that our model is useful for screening for antibiotics that could improve efficacy of FMT when used as a pretreatment. IMPORTANCE Patients with gastrointestinal disorders often exhibit derangements in their gut microbiota, which can exacerbate their symptoms. Replenishing these ecosystems with beneficial bacteria through fecal microbiota transplantation is thus a proposedly useful therapeutic; however, clinical success has varied, necessitating research into strategies to improve outcomes. Antibiotic pretreatment has been suggested as one such approach, but concerns over harmful side effects have hindered testing this hypothesis clinically. Here, we evaluate the use of bioreactors supporting defined microbial communities derived from human fecal samples as models of the colonic microbiota in determining the effectiveness of antibiotic pretreatment. We found that relative antimicrobial resistance was a key determinant of successful microbial engraftment with rifaximin (broad-spectrum antibiotic) pretreatment, despite careful timing of the application of the therapeutic agents, resulting in distinct species profiles from those of the control but with similar overall outcomes. Our model had results comparable to the clinical findings and thus can be used to screen for useful antibiotics.


Sign in / Sign up

Export Citation Format

Share Document