scholarly journals Targeting MALAT1 and miRNA-181a-5p for the intervention of acute lung injury/acute respiratory distress syndrome

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yaling Liu ◽  
Xiaodong Wang ◽  
Peiying Li ◽  
Yanhua Zhao ◽  
Liqun Yang ◽  
...  

Abstract Background ALI/ARDS is a severe lung injury leading to refractory respiratory failure, accounting for high morbidity and mortality. However, therapeutic approaches are rather limited. Targeting long non-coding RNA MALAT1 and microRNA miR-181a-5p might be potential option for ALI/ARDS intervention. Objective We aimed to investigate the role of MALAT and miR-181a-5p in the pathogenesis of ALI/ARDS, and test the therapeutic effects of targeting MALAT and miR-181a-5p for ALI/ARDS intervention in vitro. Methods MALAT1 and miR-181a-5p levels were measured in plasma from ALI/ARDS patients. In vitro human pulmonary microvascular endothelial cell (HPMEC) injury was induced by LPS treatment, and molecular targets of MALAT1 and miR-181a-5p were explored by molecular biology approaches, mainly focusing on cell apoptosis and vascular inflammation. Interaction between MALAT1 and miR-181a-5p was also detected. Finally, the effects of targeting MALAT1 and miR-181a-5p for ALI/ARDS intervention were validated in a rat ALI/ARDS model. Results MALAT1 upregulation and miR-181a-5p downregulation were observed in ALI/ARDS patients. Transfection of mimic miR-181a-5p into HPMECs revealed decreased Fas and apoptosis, along with reduced inflammatory factors. Fas was proved to be a direct target of miR-181a-5p. Similar effects were also present upon MALAT1 knockdown. As for the interaction between MALAT1 and miR-181a-5p, MALAT1 knockdown increased miR-181a-5p expression. Knocking down of MALAT1 and miR-181a-5p could both improve the outcome in ALI/ARDS rats. Conclusion MALAT1 antagonism or miR-181a-5p could both be potential therapeutic strategies for ALI/ARDS. Mechanistically, miR-181a-5p directly inhibits Fas and apoptosis, along with reduced inflammation. MALAT1 negatively regulates miR-181a-5p.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jin-ze Li ◽  
Shan-shan Meng ◽  
Xiu-Ping Xu ◽  
Yong-bo Huang ◽  
Pu Mao ◽  
...  

Mesenchymal stem cells (MSCs) may improve the treatment of acute respiratory distress syndrome (ARDS). However, few studies have investigated the effects of mechanically stretched -MSCs (MS-MSCs) in in vitro models of ARDS. The aim of this study was to evaluate the potential therapeutic effects of MS-MSCs on pulmonary microvascular endothelium barrier injuries induced by LPS. We introduced a cocultured model of pulmonary microvascular endothelial cell (EC) and MSC medium obtained from MSCs with or without mechanical stretch. We found that Wright-Giemsa staining revealed that MSC morphology changed significantly and cell plasma shrank separately after mechanical stretch. Cell proliferation of the MS-MSC groups was much lower than the untreated MSC group; expression of cell surface markers did not change significantly. Compared to the medium from untreated MSCs, inflammatory factors elevated statistically in the medium from MS-MSCs. Moreover, the paracellular permeability of endothelial cells treated with LPS was restored with a medium from MS-MSCs, while LPS-induced EC apoptosis decreased. In addition, protective effects on the remodeling of intercellular junctions were observed when compared to LPS-treated endothelial cells. These data demonstrated that the MS-MSC groups had potential therapeutic effects on the LPS-treated ECs; these results might be useful in the treatment of ARDS.


2020 ◽  
Author(s):  
Meichen Pan ◽  
Jingren Shi ◽  
Shangqi Yin ◽  
Huan Meng ◽  
Chaonan He ◽  
...  

Abstract Background: Glioma is the most frequent primary malignant brain tumor, characterized by high morbidity, high mortality and dismal prognosis. Numerous analyses have revealed the abnormal expression of long non-coding RNAs (lncRNAs) in glioma cells. This study aims to explore its role in glioma development and prognosis.Methods: The gene expression in cell lines were measured by qRT-PCR. The role of LINC00663 in glioma was confirmed by CCK8, EdU assay, transwell and western blot as well as by in vivo experiments. Besides, Pearson's correlation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were also performed as needed.Results: Firstly, data from our preliminary work (NSFC NO. 81572474) showed that LINC00663 might be largely implicated in glioma. Meanwhile, LINC00663 upregulation confirmed in glioma predicted poor clinical outcomes. Functionally, LINC00663 knockdown restrained cell proliferation, migration and invasion in vitro. Mechanistic investigations validated that LINC00663 silencing decreased AKT activation in glioma cells.Conclusions: LINC00663 promotes glioma development and progression through regulating AKT pathway, suggesting LINC00663 as a probable target for glioma treatment.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


Author(s):  
Almaz Zaki ◽  
M Shadab Ali ◽  
Vijay Hadda ◽  
Syed Mansoor Ali ◽  
Anita Chopra ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Nicholas W. Mathy ◽  
Olivia Burleigh ◽  
Andrew Kochvar ◽  
Erin R. Whiteford ◽  
Matthew Behrens ◽  
...  

Abstract Background Microglia are resident immunocompetent and phagocytic cells in the CNS. Pro-inflammatory microglia, stimulated by microbial signals such as bacterial lipopolysaccharide (LPS), viral RNAs, or inflammatory cytokines, are neurotoxic and associated with pathogenesis of several neurodegenerative diseases. Long non-coding RNAs (lncRNA) are emerging as important tissue-specific regulatory molecules directing cell differentiation and functional states and may help direct proinflammatory responses of microglia. Characterization of lncRNAs upregulated in proinflammatory microglia, such as NR_126553 or 2500002B13Rik, now termed Nostrill (iNOS Transcriptional Regulatory Intergenic LncRNA Locus) increases our understanding of molecular mechanisms in CNS innate immunity. Methods Microglial gene expression array analyses and qRT-PCR were used to identify a novel long intergenic non-coding RNA, Nostrill, upregulated in LPS-stimulated microglial cell lines, LPS-stimulated primary microglia, and LPS-injected mouse cortical tissue. Silencing and overexpression studies, RNA immunoprecipitation, chromatin immunoprecipitation, chromatin isolation by RNA purification assays, and qRT-PCR were used to study the function of this long non-coding RNA in microglia. In vitro assays were used to examine the effects of silencing the novel long non-coding RNA in LPS-stimulated microglia on neurotoxicity. Results We report here characterization of intergenic lncRNA, NR_126553, or 2500002B13Rik now termed Nostrill (iNOS Transcriptional Regulatory Intergenic LncRNA Locus). Nostrill is induced by LPS stimulation in BV2 cells, primary murine microglia, and in cortical tissue of LPS-injected mice. Induction of Nostrill is NF-κB dependent and silencing of Nostrill decreased inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in BV2 and primary microglial cells. Overexpression of Nostrill increased iNOS expression and NO production. RNA immunoprecipitation assays demonstrated that Nostrill is physically associated with NF-κB subunit p65 following LPS stimulation. Silencing of Nostrill significantly reduced NF-κB p65 and RNA polymerase II recruitment to the iNOS promoter and decreased H3K4me3 activating histone modifications at iNOS gene loci. In vitro studies demonstrated that silencing of Nostrill in microglia reduced LPS-stimulated microglial neurotoxicity. Conclusions Our data indicate a new regulatory role of the NF-κB-induced Nostrill and suggest that Nostrill acts as a co-activator of transcription of iNOS resulting in the production of nitric oxide by microglia through modulation of epigenetic chromatin remodeling. Nostrill may be a target for reducing the neurotoxicity associated with iNOS-mediated inflammatory processes in microglia during neurodegeneration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junli Sun ◽  
Keke Xin ◽  
Chenghui Leng ◽  
Jianlin Ge

Abstract Background Long noncoding RNAs contribute to various inflammatory diseases, including sepsis. We explore the role of small nucleolar RNA host gene 16 (SNHG16) in sepsis-mediated acute lung injury (ALI) and inflammation. Methods A sepsis-induced ALI rat model was constructed by the cecal ligation and perforation method. The profiles of SNHG16, miR-128-3p, and high-mobility group box 3 (HMGB3) were monitored by quantitative reverse transcription PCR and Western blot. The pathologic changes of lung tissues were evaluated by Hematoxylin–Eosin staining, immunohistochemistry, and dry and wet method. Meanwhile, the pro-inflammatory factors and proteins were determined by ELISA and Western blot. In contrast, a sepsis model in BEAS-2B was induced with lipopolysaccharide (LPS) to verify the effects of SNHG16/miR-128-3p/HMGB3 on lung epithelial cell viability and apoptosis. Results As a result, SNHG16 and HMGB3 were up-regulated, while miR-128-3p was down-regulated in sepsis-induced ALI both in vivo and in vitro. Inhibiting SNHG16 reduced the apoptosis and inflammation in the sepsis-induced ALI model. Overexpressing SNHG16 promoted LPS-mediated lung epithelial apoptosis and inhibited cell viability and inflammation, while miR-128-3p had the opposite effects. Mechanistically, SNHG16 targeted miR-128-3p and attenuated its expression, while miR-128-3p targeted the 3′ untranslated region of HMGB3. Conclusions Overall, down-regulating SNHG16 alleviated the sepsis-mediated ALI by regulating miR-128-3p/HMGB3.


2021 ◽  
Vol 17 (10) ◽  
pp. 1993-2002
Author(s):  
Haoran Yu ◽  
Chen Zhang ◽  
Wanpeng Li ◽  
Xicai Sun ◽  
Quan Liu ◽  
...  

To investigate the expression characteristics of long non-coding RNA SNHG14 in nasopharyngeal carcinoma (NPC) and its effects on epithelial-mesenchymal transition and development of nano-coated si-SNHG14 as an anti-tumor agent. The SNHG14 expression in cancerous and adjacent non-cancerous tissues was monitored using reverse transcriptionpolymerase chain reaction (RT-PCR). Gain- and loss-of-function experiments tested the regulation of SNHG14, miR- 5590-3p, and ZEB1 on PD-L1. The binding association between the above three factors was verified using bioinformatics analysis. EMT-related E-cadherin, N-cadherin, and Vimentin were tested using Western blot. Animal experiments in nude mice verified the function of SNHG14 in the EMT of NPC in vivo. The nano-coated si-SNHG14 was developed as an anti-tumor agent and was verified NPC cell in vitro. SNHG14 was upregulated in NPC tissues. Knocking down SNHG14 markedly inhibited the EMT of NPC. Additionally, the expression of ZEB1 was positively related to that of the SNHG14, while it was inversely correlated with that of miR-5590-3p. Moreover, ZEB1 transcription upregulated PD-L1 and promoted the EMT, while SNHG14 could accelerate the EMT of NPC in vivo by regulating the PD-1 and PD-L1. SNHG14-miR-5590- 3p-ZEB1 positively regulated PD-L1 and facilitate the EMT of NPC. Nano-coated si-SNHG14 significantly downregulated PD-L1 expression and decreased EMT.


Sign in / Sign up

Export Citation Format

Share Document