scholarly journals Less airway inflammation and goblet cell metaplasia in an IL-33-induced asthma model of leptin-deficient obese mice

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Atsushi Kurokawa ◽  
Mitsuko Kondo ◽  
Ken Arimura ◽  
Shigeru Ashino ◽  
Etsuko Tagaya

Abstract Background Obesity-associated asthma is a phenotype of severe asthma. Late-onset, non-eosinophilic and female-dominant phenotype is highly symptomatic and difficult to treat. Leptin, an adipokine, exerts an immunomodulatory effect. IL-33 associated with innate immunity induces type 2 inflammation and is present in adipose tissue. The purpose of this study was to elucidate the pathogenesis of obesity-associated asthma by focusing on the interaction between leptin and IL-33. Methods In leptin-deficient obese (ob/ob) and wild-type mice, IL-33 was instilled intranasally on three consecutive days. In part of the mice, leptin was injected intraperitoneally prior to IL-33 treatment. The mice were challenged with methacholine, and airway hyperresponsiveness (AHR) was assessed by resistance (Rrs) and elastance (Ers) of the respiratory system using the forced oscillation technique. Cell differentiation, IL-5, IL-13, eotaxin, keratinocyte-derived chemokine (KC) in bronchoalveolar lavage fluid (BALF) and histology of the lung were analyzed. For the in vitro study, NCI-H292 cells were stimulated with IL-33 in the presence or absence of leptin. Mucin-5AC (MUC5AC) levels were measured using an enzyme-linked immunosorbent assay. Results Ob/ob mice showed greater Rrs and Ers than wild-type mice. IL-33 with leptin, but not IL-33 alone, enhanced Ers rather than Rrs challenged with methacholine in ob/ob mice, whereas it enhanced Rrs alone in wild-type mice. IL-33-induced eosinophil numbers, cytokine levels in BALF, eosinophilic infiltration around the bronchi, and goblet cell metaplasia were less in ob/ob mice than in wild-type mice. However, leptin pretreatment attenuated these changes in ob/ob mice. MUC5AC levels were increased by co-stimulation with IL-33 and leptin in vitro. Conclusions Ob/ob mice show innate AHR. IL-33 with leptin, but not IL-33 alone, induces airway inflammation and goblet cell metaplasia and enhances AHR involving peripheral airway closure. This is presumably accelerated by mucus in ob/ob mice. These results may explain some aspects of the pathogenesis of obesity-associated asthma.

2020 ◽  
Author(s):  
Atsushi Kurokawa ◽  
Mitsuko Kondo ◽  
Ken Arimura ◽  
Shigeru Ashino ◽  
Etsuko Tagaya

Abstract BackgroundAsthma with obesity is a phenotype of severe asthma. Leptin exerts an immunomodulatory effect and its level is increased in obesity. IL-33 is associated with innate immunity and induces type 2 inflammation, and is present in adipose tissue. However, the role of IL-33 and leptin in obesity-associated asthma is not fully understood. We examined the effect of IL-33 on eosinophilic inflammation, goblet cell metaplasia, and airway responsiveness in leptin-deficient obese (ob/ob) and wild-type mice, and examined the effect of exogenous leptin pretreatment. MethodsIn ob/ob and wild-type mice, IL-33 was instilled intranasally on three consecutive days. In part of the animals, leptin was injected intraperitoneally prior to IL-33 treatment. The mice were challenged with methacholine and resistance of the respiratory system (Rrs) was measured using the forced oscillation technique. Cell differentiation, IL-5, IL-13, eotaxin, KC in bronchoalveolar lavage fluid (BALF), and histology of the lung were analyzed. For the in vitro study, NCI-H292 cells were stimulated with IL-33 in the presence or absence of leptin, and MUC5AC levels were measured by ELISA. ResultsOb/ob mice showed greater baseline Rrs than wild-type mice. IL-33 and IL-33 with leptin did not enhance Rrs challenged with methacholine compared to non-treatment in ob/ob mice, whereas IL-33 with leptin enhanced Rrs in wild-type mice. Ob/ob mice showed less IL-33-induced eosinophil numbers, IL-5, IL-13, eotaxin, and KC levels in BALF and eosinophilic infiltration around bronchi and goblet cell metaplasia than wild-type mice, but leptin pretreatment attenuated these changes in ob/ob mice. MUC5AC levels were increased by co-stimulation with IL-33 and leptin in vitro . ConclusionsLeptin plays an important role in IL-33-induced inflammation and goblet cell metaplasia in the airway, but obesity per se increases airway hyperresponsiveness independent of inflammation. These results explain some aspects of the pathogenesis of obesity-related asthma.


2012 ◽  
Vol 113 (9) ◽  
pp. 1476-1485 ◽  
Author(s):  
Ming Zhu ◽  
Alison S. Williams ◽  
Lucas Chen ◽  
Allison P. Wurmbrand ◽  
Erin S. Williams ◽  
...  

The purpose of this study was to examine the role of tumor necrosis factor receptor 1 (TNFR1) in the airway hyperresponsiveness characteristic of obese mice. Airway responsiveness to intravenous methacholine was measured using the forced oscillation technique in obese Cpe fat mice that were either sufficient or genetically deficient in TNFR1 ( Cpe fat and Cpe fat/TNFR1−/− mice) and in lean mice that were either sufficient or genetically deficient in TNFR1 [wild-type (WT) and TNFR1−/− mice]. Compared with lean WT mice, Cpe fat mice exhibited airway hyperresponsiveness. Airway hyperresponsives was also greater in Cpe fat/TNFR1−/− than in Cpe fat mice. Compared with WT mice, Cpe fat mice had increases in bronchoalveolar lavage fluid concentrations of several inflammatory moieties including eotaxin, IL-9, IP-10, KC, MIG, and VEGF. These factors were also significantly elevated in Cpe fat/TNFR1−/− vs. TNFR1−/− mice. Additional moieties including IL-13 were also elevated in Cpe fat/TNFR1−/− vs. TNFR1−/− mice but not in Cpe fat vs. WT mice. IL-17A mRNA expression was greater in Cpe fat/TNFR1−/− vs. Cpe fat mice and in TNFR1−/− vs. WT mice. Analysis of serum indicated that obesity resulted in systemic as well as pulmonary inflammation, but TNFR1 deficiency had little effect on this systemic inflammation. Our results indicate that TNFR1 is protective against the airway hyperresponsiveness associated with obesity and suggest that effects on pulmonary inflammation may be contributing to this protection.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3260
Author(s):  
Carla M. P. Ribeiro ◽  
Martina Gentzsch

Defective CFTR biogenesis and activity in cystic fibrosis airways leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. Most cystic fibrosis patients have at least one copy of the F508del CFTR mutation, which results in a protein retained in the endoplasmic reticulum and degraded by the proteosomal pathway. CFTR modulators, e.g., correctors, promote the transfer of F508del to the apical membrane, while potentiators increase CFTR activity. Corrector and potentiator double therapies modestly improve lung function, whereas triple therapies with two correctors and one potentiator indicate improved outcomes. Enhanced F508del rescue by CFTR modulators is achieved by exposing F508del/F508del primary cultures of human bronchial epithelia to relevant inflammatory stimuli, i.e., supernatant from mucopurulent material or bronchoalveolar lavage fluid from human cystic fibrosis airways. Inflammation enhances the biochemical and functional rescue of F508del by double or triple CFTR modulator therapy and overcomes abrogation of CFTR correction by chronic VX-770 treatment in vitro. Furthermore, the impact of inflammation on clinical outcomes linked to CFTR rescue has been recently suggested. This review discusses these data and possible mechanisms for airway inflammation-enhanced F508del rescue. Expanding the understanding of how airway inflammation improves CFTR rescue may benefit CF patients.


2021 ◽  
Author(s):  
Sorif Uddin ◽  
Augustin Amour ◽  
David J Lewis ◽  
Chris D Edwards ◽  
Matthew G Williamson ◽  
...  

Abstract Background: Phosphoinositide-3-kinase-delta (PI3Kδ) inhibition is a promising therapeutic approach for inflammatory conditions due to its role in leucocyte proliferation, migration and activation. However, the effect of PI3Kδ inhibition on group-2-innate lymphoid cells (ILC2s) and inflammatory eosinophils remains unknown. Using a murine model exhibiting persistent airway inflammation we sought to understand the effect of PI3Kδ inhibition, montelukast and anti-IL5 antibody treatment on IL33 expression, group-2-innate lymphoid cells, inflammatory eosinophils, and goblet cell metaplasia. Results: Mice were sensitised to house dust mite and after allowing inflammation to resolve, were re-challenged with house dust mite to re-initiate airway inflammation. ILC2s were found to persist in the airways following house dust mite sensitisation and after re-challenge their numbers increased further along with accumulation of inflammatory eosinophils. In contrast to montelukast or anti-IL5 antibody treatment, PI3Kδ inhibition ablated IL33 expression and prevented group-2-innate lymphoid cell accumulation. Only PI3Kδ inhibition and IL5 neutralization reduced the infiltration of inflammatory eosinophils. Moreover, PI3Kδ inhibition reduced goblet cell metaplasia. Conclusions: Hence, we show that PI3Kδ inhibition dampens allergic inflammatory responses by ablating key cell types and cytokines involved in T-helper-2-driven inflammatory responses.


2019 ◽  
Vol 20 (20) ◽  
pp. 4989 ◽  
Author(s):  
Yoshinori Tanino ◽  
Xintao Wang ◽  
Takefumi Nikaido ◽  
Kenichi Misa ◽  
Yuki Sato ◽  
...  

Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4′s critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.


2001 ◽  
Vol 276 (15) ◽  
pp. 11980-11987 ◽  
Author(s):  
Steven A. Haney ◽  
Elizabeth Glasfeld ◽  
Cynthia Hale ◽  
David Keeney ◽  
Zhizhen He ◽  
...  

The recruitment of ZipA to the septum by FtsZ is an early, essential step in cell division inEscherichia coli. We have used polymerase chain reaction-mediated random mutagenesis in the yeast two-hybrid system to analyze this interaction and have identified residues within a highly conserved sequence at the C terminus of FtsZ as the ZipA binding site. A search for suppressors of a mutation that causes a loss of interaction (ftsZD373G) identified eight different changes at two residues within this sequence.In vitro, wild type FtsZ interacted with ZipA with a high affinity in an enzyme-linked immunosorbent assay, whereas FtsZD373Gfailed to interact. Two mutant proteins examined restored this interaction significantly.In vivo, the alleles tested are significantly more toxic than the wild typeftsZand cannot complement a deletion. We have shown that a fusion, which encodes the last 70 residues of FtsZ in the two-hybrid system, is sufficient for the interaction with FtsA and ZipA. However, when the wild type sequence is compared with one that encodes FtsZD373G, no interaction was seen with either protein. Mutations surrounding Asp-373 differentially affected the interactions of FtsZ with ZipA and FtsA, indicating that these proteins bind the C terminus of FtsZ differently.


2001 ◽  
Vol 280 (3) ◽  
pp. L436-L441 ◽  
Author(s):  
Masashi Komori ◽  
Hiromasa Inoue ◽  
Koichiro Matsumoto ◽  
Hiroshi Koto ◽  
Satoru Fukuyama ◽  
...  

Goblet cell metaplasia is an important morphological feature in the airways of patients with chronic airway diseases; however, the precise mechanisms that cause this feature are unknown. We investigated the role of endogenous platelet-activating factor (PAF) in airway goblet cell metaplasia induced by cigarette smoke in vivo. Guinea pigs were exposed repeatedly to cigarette smoke for 14 consecutive days. The number of goblet cells in each trachea was determined with Alcian blue-periodic acid-Schiff staining. Differential cell counts and PAF levels in bronchoalveolar lavage fluid were also evaluated. Cigarette smoke exposure significantly increased the number of goblet cells. Eosinophils, neutrophils, and PAF levels in bronchoalveolar lavage fluid were also significantly increased after cigarette smoke. Treatment with a specific PAF receptor antagonist, E-6123, significantly attenuated the increases in the number of airway goblet cells, eosinophils, and neutrophils observed after cigarette smoke exposure. These results suggest that endogenous PAF may play a key role in goblet cell metaplasia induced by cigarette smoke and that potential roles exist for inhibitors of PAF receptor in the treatment of hypersecretory airway diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Araika Gutiérrez-Rivera ◽  
Haizea Iribar ◽  
Anna Tuneu ◽  
Ander Izeta

The most characteristic feature of neurofibromatosis type 1 (NF1) is the development of neurofibromas. It has been suggested that these tumors are caused by somatic inactivation of the wild-typeNF1allele, but the cell that originally suffers this mutation remains controversial. Several lines of evidence support the clonal origin of these tumors, and it has been recently suggested that skin-derived precursor cells (SKPs) could be the cell of origin of dermal neurofibromas. Nullizygous (NF1−/−) SKPs do give rise to neurofibromas when transplanted to heterozygous mice. Moreover, a nullizygous population of cells that is S100βnegative is present in human neurofibromas, andNF1+/−multipotent progenitor cells are seemingly recruited to the tumor. This evidence supports the neurofibroma stem cell hypothesis and a putative involvement of SKPs in the aetiopathogenesis of the disease, suggesting that SKPs could become a valuable tool for the in vitro study of NF1.


Sign in / Sign up

Export Citation Format

Share Document