scholarly journals Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system

2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Ping Wei ◽  
Jing Liang ◽  
Jing Cheng ◽  
Min-Hua Zong ◽  
Wen-Yong Lou
Talanta ◽  
2016 ◽  
Vol 152 ◽  
pp. 23-32 ◽  
Author(s):  
Na Li ◽  
Yuzhi Wang ◽  
Kaijia Xu ◽  
Yanhua Huang ◽  
Qian Wen ◽  
...  

2017 ◽  
Author(s):  
Xifeng Zhang ◽  
Ji Zhang

Deep eutectic solvents (DESs) are new green solvents that have attracted the attention of the scientific community mainly due to their unique properties and special characteristics, which are different from those of traditional solvents.A method based on ultrasonically assisted deep eutectic solvent aqueous two-phase systems( UAE-DES-ATPS) was developed for extracting ursolic acid (UA) from Cynomorium songaricum Rupr. Four different types of choline chloride-based DESs were prepared.Choline chloride-glucose (ChCl-Glu) exhibited good selective extraction ability. An optimum DES-ATPS of 36% (w/w) ChCl-Glu and 25% (w/w) K2HPO4 was considered to be a satisfactory system for extracting UA. Response surface methodology (RSM) method was used to optimize the extraction of UA using UAE-DES-ATPS. The optimum ultrasound-assisted conditions were as follows: solvent to solid ratio of 15:1 (g/g), ultrasound power of 470 W, and extraction time of 54 min. Compared with the conventional UAE method, the yields were basically the same, but the presented method had higher purity. The structure of UA did not change between pure UA and UA in the upper phase by UV–vis and FT-IR. This approach using ChCl-based DES-ATPS as a novel extraction system and ultrasound as a source of energy provided better choice for the separation of active components from other natural products.


2017 ◽  
Author(s):  
Xifeng Zhang ◽  
Ji Zhang

Deep eutectic solvents (DESs) are new green solvents that have attracted the attention of the scientific community mainly due to their unique properties and special characteristics, which are different from those of traditional solvents.A method based on ultrasonically assisted deep eutectic solvent aqueous two-phase systems( UAE-DES-ATPS) was developed for extracting ursolic acid (UA) from Cynomorium songaricum Rupr. Four different types of choline chloride-based DESs were prepared.Choline chloride-glucose (ChCl-Glu) exhibited good selective extraction ability. An optimum DES-ATPS of 36% (w/w) ChCl-Glu and 25% (w/w) K2HPO4 was considered to be a satisfactory system for extracting UA. Response surface methodology (RSM) method was used to optimize the extraction of UA using UAE-DES-ATPS. The optimum ultrasound-assisted conditions were as follows: solvent to solid ratio of 15:1 (g/g), ultrasound power of 470 W, and extraction time of 54 min. Compared with the conventional UAE method, the yields were basically the same, but the presented method had higher purity. The structure of UA did not change between pure UA and UA in the upper phase by UV–vis and FT-IR. This approach using ChCl-based DES-ATPS as a novel extraction system and ultrasound as a source of energy provided better choice for the separation of active components from other natural products.


Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 76 ◽  
Author(s):  
Petruta Matei ◽  
Jesús Martín-Gil ◽  
Beatrice Michaela Iacomi ◽  
Eduardo Pérez-Lebeña ◽  
María Barrio-Arredondo ◽  
...  

Phytophthora cinnamomi, responsible for “root rot” or “dieback” plant disease, causes a significant amount of economic and environmental impact. In this work, the fungicide action of nanocomposites based on silver nanoparticles and polyphenol inclusion compounds, which feature enhanced bioavailability and water solubility, was assayed for the control of this soil-borne water mold. Inclusion compounds were prepared by an aqueous two-phase system separation method through extraction, either in an hydroalcoholic solution with chitosan oligomers (COS) or in a choline chloride:urea:glycerol deep eutectic solvent (DES). The new inclusion compounds were synthesized from stevioside and various polyphenols (gallic acid, silymarin, ferulic acid and curcumin), in a [6:1] ratio in the COS medium and in a [3:1] ratio in the DES medium, respectively. Their in vitro response against Phytophthora cinnamomi isolate MYC43 (at concentrations of 125, 250 and 500 µg·mL−1) was tested, which found a significant mycelial growth inhibition, particularly high for the composites prepared using DES. Therefore, these nanocomposites hold promise as an alternative to fosetyl-Al and metalaxyl conventional systemic fungicides.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 636
Author(s):  
Jinyan Lang ◽  
Junliang Lu ◽  
Ping Lan ◽  
Na Wang ◽  
Hongyan Yang ◽  
...  

In this paper, a two-phase system, formed by oxalic acid/choline chloride-based deep eutectic solvent (DES) and chosen extractants, was used as a dissolution–reaction–separation system, and metal chloride was used as a catalyst to study the degradation of cellulose to produce 5-hydroxymethylfurfural (5-HMF) and glucose. The effects of the amount of organic solvent and the reaction temperature on product yield, the repeated recycling of DES, the comparison between a two-phase system and a homogeneous system, and the mechanism of cellulose degradation to 5-HMF were investigated. The results show that ethyl n-butyrate has the best extraction effect on 5-HMF. Compared with the homogeneous system, the yield of 5-HMF and glucose in the two-phase system is significantly improved. At a temperature of 140 °C and a reaction time of 120 min, the yields of glucose and 5-HMF reached the maximum, which were 23.5% and 29.8%, respectively. After DES was reused three times, the yields of glucose and 5-HMF decreased greatly, indicating that the recycling rate of DES was low.


2015 ◽  
Vol 864 ◽  
pp. 9-20 ◽  
Author(s):  
Kaijia Xu ◽  
Yuzhi Wang ◽  
Yanhua Huang ◽  
Na Li ◽  
Qian Wen

1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


Sign in / Sign up

Export Citation Format

Share Document