scholarly journals Role of phosphate limitation and pyruvate decarboxylase in rewiring of the metabolic network for increasing flux towards isoprenoid pathway in a TATA binding protein mutant of Saccharomyces cerevisiae

2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Manisha Wadhwa ◽  
Sumana Srinivasan ◽  
Anand K. Bachhawat ◽  
K. V. Venkatesh
Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 647-657 ◽  
Author(s):  
D M Eisenmann ◽  
C Chapon ◽  
S M Roberts ◽  
C Dollard ◽  
F Winston

Abstract Mutations in the Saccharomyces cerevisiae SPT8 gene were previously isolated as suppressors of retrotransposon insertion mutations in the 5' regions of the HIS4 and LYS2 genes. Mutations in SPT8 confer phenotypes similar to those caused by particular mutations in SPT15, which encodes the TATA-binding protein (TBP). These phenotypes are also similar to those caused by mutations in the SPT3 gene, which encodes a protein that directly interacts with TBP. We have now cloned and sequenced the SPT8 gene and have shown that it encodes a predicted protein of 602 amino acids with an extremely acidic amino terminus. In addition, the predicted SPT8 amino acid sequence contains one copy of a sequence motif found in multiple copies in a number of other eukaryotic proteins, including the beta subunit of heterotrimeric G proteins. To investigate further the relationship between SPT8, SPT3 and TBP, we have analyzed the effect of an spt8 null mutation in combination with different spt3 and spt15 mutations. This genetic analysis has shown that an spt8 deletion mutation is suppressed by particular spt3 alleles. Taken together with previous results, these data suggest that the SPT8 protein is required, directly or indirectly, for TBP function at particular promoters and that the role of SPT8 may be to promote a functional interaction between SPT3 and TBP.


1994 ◽  
Vol 14 (11) ◽  
pp. 7256-7264
Author(s):  
Y W Kim ◽  
G A Otterson ◽  
R A Kratzke ◽  
A B Coxon ◽  
F J Kaye

The growth suppressor activities of the RB and p107 products are believed to be mediated by the reversible binding of a heterogeneous family of cellular proteins to a conserved T/E1A pocket domain that is present within both proteins. To study the functional role of these interactions, we examined the properties of cellular retinoblastoma binding protein 2 (RBP2) binding to RB, p107, and the related TATA-binding protein (TBP) product. We observed that although RBP2 bound exclusively to the T/E1A pocket of p107, it could interact with RB through independent T/E1A and non-T/E1A domains and with TBP only through the non-T/E1A domain. Consistent with this observation, we found that a mutation within the Leu-X-Cys-X-Glu motif of RBP2 resulted in loss of ability to precipitate p107, while RB- and TBP-binding activities were retained. We located the non-T/E1A binding site of RBP2 on a 15-kDa fragment that is independent from the Leu-X-Cys-X-Glu motif and encodes binding activity for RB and TBP but does not interact with p107. Despite the presence of a non-T/E1A binding site, however, recombinant RBP2 retained the ability to preferentially precipitate active hypophosphorylated RB from whole-cell lysates. In addition, we found that cotransfection of RBP2 can reverse in vivo RB-mediated suppression of E2F activity. These findings confirm the differential binding specificities of the related RB, p107, and TBP proteins and support the presence of multifunctional domains on the nuclear RBP2 product which may allow complex interactions with the cellular transcription machinery.


2004 ◽  
Vol 24 (22) ◽  
pp. 10072-10082 ◽  
Author(s):  
Marcin P. Klejman ◽  
Lloyd A. Pereira ◽  
Hester J. T. van Zeeburg ◽  
Siv Gilfillan ◽  
Michael Meisterernst ◽  
...  

ABSTRACT Transcriptional activity of the TATA-binding protein (TBP) is controlled by a variety of proteins. The BTAF1 protein (formerly known as TAFII170/TAF-172 and the human ortholog of Saccharomyces cerevisiae Mot1p) and the NC2 complex composed of NC2α (DRAP1) and NC2β (Dr1) are able to bind to TBP directly and regulate RNA polymerase II transcription both positively and negatively. Here, we present evidence that the NC2α subunit interacts with BTAF1. In contrast, the NC2β subunit is not able to associate with BTAF1 and seems to interfere with the BTAF1-TBP interaction. Addition of NC2α or the NC2 complex can stimulate the ability of BTAF1 to interact with TBP. This function is dependent on the presence of ATP in cell extracts but does not involve the ATPase activity of BTAF1 nor phosphorylation of NC2α. Together, our results constitute the first evidence of the physical cooperation between BTAF1 and NC2α in TBP regulation and provide a framework to understand transcription functions of NC2α and NC2β in vivo.


1994 ◽  
Vol 14 (11) ◽  
pp. 7256-7264 ◽  
Author(s):  
Y W Kim ◽  
G A Otterson ◽  
R A Kratzke ◽  
A B Coxon ◽  
F J Kaye

The growth suppressor activities of the RB and p107 products are believed to be mediated by the reversible binding of a heterogeneous family of cellular proteins to a conserved T/E1A pocket domain that is present within both proteins. To study the functional role of these interactions, we examined the properties of cellular retinoblastoma binding protein 2 (RBP2) binding to RB, p107, and the related TATA-binding protein (TBP) product. We observed that although RBP2 bound exclusively to the T/E1A pocket of p107, it could interact with RB through independent T/E1A and non-T/E1A domains and with TBP only through the non-T/E1A domain. Consistent with this observation, we found that a mutation within the Leu-X-Cys-X-Glu motif of RBP2 resulted in loss of ability to precipitate p107, while RB- and TBP-binding activities were retained. We located the non-T/E1A binding site of RBP2 on a 15-kDa fragment that is independent from the Leu-X-Cys-X-Glu motif and encodes binding activity for RB and TBP but does not interact with p107. Despite the presence of a non-T/E1A binding site, however, recombinant RBP2 retained the ability to preferentially precipitate active hypophosphorylated RB from whole-cell lysates. In addition, we found that cotransfection of RBP2 can reverse in vivo RB-mediated suppression of E2F activity. These findings confirm the differential binding specificities of the related RB, p107, and TBP proteins and support the presence of multifunctional domains on the nuclear RBP2 product which may allow complex interactions with the cellular transcription machinery.


Author(s):  
Vladimír Matha ◽  
Alexander Jegorov ◽  
Frantíšek Weyda

Cyclosporin A (Cyc A), a cyclic fungal undecapeptide produced by various deuteromyces is a potent immunosuppressant widely used in human medicine to prevent rejection of transplanted organs such a kidney, liver, heart and bone marrow. Although originally isolated as an antifungal compound, practically no attention was devoted to its effect on the physiology of its high-producing organisms. In vertebrate cells, the cytosolic Cyc-A binding protein, cyclophilin, is expected to be a primary target involved in the regulation of Cyc A immunosuppressive effect. Similarly, the direct cyclophilin-mediated effect (toxicity) confirming the key role of this Cyc A receptor in Cyc A function, was determined even in Neurospora crassa and Saccharomyces cerevisiae. Induction of Cyc A resistance in both microorganisms was characterized by either of the complete lost of cyclophilin or by the lost of its ability to bind Cyc A.


2013 ◽  
Vol 97 (18) ◽  
pp. 8227-8238 ◽  
Author(s):  
Na-Rae Kim ◽  
Jungwoo Yang ◽  
Hyeji Kwon ◽  
Jieun An ◽  
Wonja Choi ◽  
...  

1996 ◽  
Vol 16 (6) ◽  
pp. 3206-3213 ◽  
Author(s):  
S M Roberts ◽  
F Winston

Mutations selected as suppressors of Ty and solo delta insertion mutations is Saccharomyces cerevisiae have identified a number of genes important for transcription initiation. One of these gens, SPT15, encodes the TATA-binding protein, and three others, SPT3, SPT7, and SPT8, encode proteins functionally related to the TATA-binding protein. To identify additional related functions, we have selected for new spt mutations. This work has identified one new gene, SPT20. Null mutations in SPT20 cause poor growth and a set of severe transcriptional defects very similar to those caused by null mutations in SPT3, SPT7, and SPT8 and also very similar to those caused by certain missense mutations in SPT15. Consistent with its having an important function in transcription in vivo, SPT20 was also recently identified as ADA5 and has been shown to be important for transcriptional activation (G.A. Marcus, J. Horiuchi, N. Silverman, and L. Guarente, Mol. Cell. Biol. 16:3197-3205, 1996.


2009 ◽  
Vol 75 (19) ◽  
pp. 6055-6061 ◽  
Author(s):  
Richard J. S. Baerends ◽  
Jin-Long Qiu ◽  
Simon Rasmussen ◽  
Henrik Bjørn Nielsen ◽  
Anders Brandt

ABSTRACT Successful fermentations to produce ethanol require microbial strains that have a high tolerance to glucose and ethanol. Enhanced glucose/ethanol tolerance of the laboratory yeast Saccharomyces cerevisiae strain BY4741 under certain growth conditions as a consequence of the expression of a dominant mutant allele of the SPT15 gene (SPT1 5-3 00) corresponding to the three amino acid changes F177S, Y195H, and K218R has been reported (H. Alper, J. Moxley, E. Nevoigt, G. R. Fink, and G. Stephanopoulos, Science 314:1565-1568, 2006). The SPT15 gene codes for the TATA-binding protein. This finding prompted us to examine the effect of expression of the SPT1 5-3 00 allele in various yeast species of industrial importance. Expression of SPT1 5-3 00 in leucine-prototrophic strains of S. cerevisiae, Saccharomyces bayanus, or Saccharomyces pastorianus (lager brewing yeast), however, did not improve tolerance to ethanol on complex rich medium (yeast extract-peptone-dextrose). The enhanced growth of the laboratory yeast strain BY4741 expressing the SPT1 5-3 00 mutant allele was seen only on defined media with low concentrations of leucine, indicating that the apparent improved growth in the presence of ethanol was indeed associated with enhanced uptake and/or utilization of leucine. Reexamination of the microarray data published by Alper and coworkers likewise suggested that expression of genes coding for the leucine permeases, Tat1p and Bap3p, were upregulated in the SPT1 5-3 00 mutant, as was expression of the genes ARO10, ADH3, ADH5, and SFA1, involved in leucine degradation.


Sign in / Sign up

Export Citation Format

Share Document