scholarly journals Genetic tools for the development of recombinant lactic acid bacteria

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiapeng Wu ◽  
Yongping Xin ◽  
Jian Kong ◽  
Tingting Guo

AbstractLactic acid bacteria (LAB) are a phylogenetically diverse group with the ability to convert soluble carbohydrates into lactic acid. Many LAB have a long history of safe use in fermented foods and are recognized as food-grade microorganisms. LAB are also natural inhabitants of the human intestinal tract and have beneficial effects on health. Considering these properties, LAB have potential applications as biotherapeutic vehicles to delivery cytokines, antigens and other medicinal molecules. In this review, we summarize the development of, and advances in, genome manipulation techniques for engineering LAB and the expected future development of such genetic tools. These methods are crucial for us to maximize the value of LAB. We also discuss applications of the genome-editing tools in enhancing probiotic characteristics and therapeutic functionalities of LAB.

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Dominika Jurášková ◽  
Susana C. Ribeiro ◽  
Celia C. G. Silva

The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.


2020 ◽  
Vol 44 (4) ◽  
pp. 454-489 ◽  
Author(s):  
Francesca De Filippis ◽  
Edoardo Pasolli ◽  
Danilo Ercolini

ABSTRACT Lactic acid bacteria (LAB) are present in foods, the environment and the animal gut, although fermented foods (FFs) are recognized as the primary niche of LAB activity. Several LAB strains have been studied for their health-promoting properties and are employed as probiotics. FFs are recognized for their potential beneficial effects, which we review in this article. They are also an important source of LAB, which are ingested daily upon FF consumption. In this review, we describe the diversity of LAB and their occurrence in food as well as the gut microbiome. We discuss the opportunities to study LAB diversity and functional properties by considering the availability of both genomic and metagenomic data in public repositories, as well as the different latest computational tools for data analysis. In addition, we discuss the role of LAB as potential probiotics by reporting the prevalence of key genomic features in public genomes and by surveying the outcomes of LAB use in clinical trials involving human subjects. Finally, we highlight the need for further studies aimed at improving our knowledge of the link between LAB-fermented foods and the human gut from the perspective of health promotion.


2021 ◽  
Vol 6 (2) ◽  
pp. 273-283
Author(s):  
Siti Nur Azizah ◽  
Mikhania Christiningtyas Eryani ◽  
Azizah Azizah

Probiotics are microbes in fermented foods that have beneficial effects on health. Microbes that act as probiotics are lactic acid bacteria (LAB) that can produce metabolites such as lactic acid, hydrogen peroxide, and bacteriocins. This study aimed to obtain lactic acid bacterial isolates from tape and tempeh, and to test the potential of LAB as a probiotic candidate by activity test as an antidiarrhea and its resistance to gastric pH and bile salts. The fermentation products used as a source of LAB isolates are tempeh sumber mas merk, and yellow cassava tape, sari madu merk from Jember. The results of the first stage regarding the isolation of LAB using GYP media showed that there were 2 LAB isolates (TaJ.14 and TaJ.15) from the tape and 4 LAB isolates (TeJ.18, TeJ.22, TeJ.24, and TeJ.25) from tempeh. The results of the antidiarrheal test using the disc diffusion method (oxoid) showed that TaJ.14 and TaJ.15 isolates were able to inhibit Bacillus subtilis, Escherichia coli, and Shigella dysentriae, while TeJ.18, TeJ.22, TeJ.24, TeJ.25, and Lactobacillus casei (control) was only able to inhibit B. subtilis and E. coli. The results of LAB resistance to gastric pH showed that the TeJ.25 isolate had the highest percentage of pH 3 and 2.5 resistance (51.13 and 33.03%) compared to other isolates and controls. LAB resistance test results against bile salts (oxgal) showed that the TeJ.22 isolate had the highest percentage of resistance (75.10%) compared to other isolates although was still higher in control (75.99%).


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 123
Author(s):  
Yulah Jeong ◽  
Hyemin Kim ◽  
Ji Yeon Lee ◽  
GaYeong Won ◽  
Soo-Im Choi ◽  
...  

In this study, lactic acid bacteria (LAB) strains derived from human and fermented food sources were examined to identify their properties related to obesity, as well as establish their safety and stability as probiotics. LAB (Lacticaseibacillus rhamnosus MG4502, Lactobacillus gasseri MG4524, Limosilactobacillus reuteri MG5149, and Weissella cibaria MG5285) exhibited antioxidant activity through DPPH (>26.1%) and ABTS (>40.1%) radical scavenging assays and α-glucosidase inhibitory activities (>60.3%), respectively. The LAB strains promoted anti-adipogenesis by reducing lipid accumulation in 3T3-L1 cells by Oil Red O staining (>70.3%). In addition, we found that these LAB strains were resistant to simulated gastric and intestinal fluids (pH 3, 4, 7, and 8) and showed potential for health promotion, based on hemolysis, cell adhesion, antibiotic susceptibility, and enzyme production. Thus, LAB may be used as probiotic ingredients with beneficial effects.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1435
Author(s):  
Hee Seo ◽  
Jae-Han Bae ◽  
Gayun Kim ◽  
Seul-Ah Kim ◽  
Byung Hee Ryu ◽  
...  

The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. This study aimed to evaluate the suitability of probiotic lactic acid bacteria (LAB) as a starter for kimchi fermentation. Seventeen probiotic type strains were tested for their growth rates, volatile aroma compounds, metabolites, and sensory characteristics of kimchi, and their characteristics were compared to those of Leuconostoc (Le.) mesenteroides DRC 1506, a commercial kimchi starter. Among the tested strains, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Ligilactobacillus salivarius exhibited high or moderate growth rates in simulated kimchi juice (SKJ) at 37 °C and 15 °C. When these five strains were inoculated in kimchi and metabolite profiles were analyzed during fermentation using GC/MS and 1H-NMR, data from the principal component analysis (PCA) showed that L. fermentum and L. reuteri were highly correlated with Le. mesenteroides in concentrations of sugar, mannitol, lactate, acetate, and total volatile compounds. Sensory test results also indicated that these three strains showed similar sensory preferences. In conclusion, L. fermentum and L. reuteri can be considered potential candidates as probiotic starters or cocultures to develop health-promoting kimchi products.


2020 ◽  
Vol 9 (1) ◽  
pp. 33
Author(s):  
Jirapat Kanklai ◽  
Tasneem Chemama Somwong ◽  
Patthanasak Rungsirivanich ◽  
Narumol Thongwai

Gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, can be naturally synthesized by a group of lactic acid bacteria (LAB) which is commonly found in rich carbohydrate materials such as fruits and fermented foods. Thirty-six isolates of GABA-producing LAB were obtained from Thai fermented foods. Among these, Levilactobacillus brevis F064A isolated from Thai fermented sausage displayed high GABA content, 2.85 ± 0.10 mg/mL and could tolerate acidic pH and bile salts indicating a promising probiotic. Mulberry (Morus sp.) is widely grown in Thailand. Many mulberry fruits are left to deteriorate during the high season. To increase its value, mulberry juice was prepared and added to monosodium glutamate (MSG), 2% (w/v) prior to inoculation with 5% (v/v) of L. brevis F064A and incubated at 37 °C for 48 h to obtain the GABA-fermented mulberry juice (GABA-FMJ). The GABA-FMJ obtained had 3.31 ± 0.06 mg/mL of GABA content, 5.58 ± 0.52 mg gallic acid equivalent/mL of antioxidant activity, 234.68 ± 15.53 mg cyanidin-3-glucoside/mL of anthocyanin, an ability to inhibit growth of Bacillus cereus TISTR 687, Salmonella Typhi DMST 22842 and Shigella dysenteriae DMST 1511, and 10.54 ± 0.5 log10 colony-forming units (CFU)/mL of viable L. brevis F064A cell count. This GABA-FMJ was considered as a potential naturally functional food for human of all ages.


2016 ◽  
Vol 79 (11) ◽  
pp. 1919-1928 ◽  
Author(s):  
SHUANG XU ◽  
TAIGANG LIU ◽  
CHIRAZ AKOREDE IBINKE RADJI ◽  
JING YANG ◽  
LANMING CHEN

ABSTRACT In this study, we analyzed Chinese traditional fermented food to isolate and identify new lactic acid bacteria (LAB) strains with novel functional properties and to evaluate their cellular antioxidant and bile salt hydrolase (BSH) activities in vitro. A sequential screening strategy was developed to efficiently isolate and obtain 261 LAB strains tolerant of bile salt, acid, and H2O2 from nine Chinese traditional fermented foods. Among these strains, 70 were identified as having 2,2-diphenyl-1-picrylhydrazyl radical scavenging and/or BSH activity. These strains belonged to eight species: Enterococcus faecium (33% of the strains), Lactobacillus plantarum (26%), Leuconostoc mesenteroides (14%), Pediococcus pentosaceus (6%), Enterococcus durans (9%), Lactobacillus brevis (9%), Pediococcus ethanolidurans (3%), and Lactobacillus casei (1%). The pulsed-field gel electrophoresis genome fingerprinting profiles of these strains revealed 38 distinct pulsotypes, indicating a high level of genomic diversity among the tested strains. Twenty strains were further evaluated for hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity exerted by both viable intact cells and/or intracellular cell-free extracts. Some strains, such as L. plantarum D28 and E. faecium B28, had high levels of both cellular antioxidant and BSH activities in vitro. These strains are promising probiotic components for health-promoting functional foods.


2017 ◽  
Vol 111 ◽  
pp. 1-9 ◽  
Author(s):  
John R. Lamont ◽  
Olivia Wilkins ◽  
Margaret Bywater-Ekegärd ◽  
Donald L. Smith

2019 ◽  
pp. 151-174
Author(s):  
Fergus W. J. Collins ◽  
Mary C. Rea ◽  
Colin Hill ◽  
R. Paul Ross

Sign in / Sign up

Export Citation Format

Share Document