scholarly journals The lncRNA XIST promotes colorectal cancer cell growth through regulating the miR-497-5p/FOXK1 axis

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Wang ◽  
Jia-Xing He ◽  
Guo-Zhan Jia ◽  
Ke Wang ◽  
Shuai Zhou ◽  
...  

Abstract Background Recent studies suggest that long noncoding RNAs (lncRNAs) play an important role in tumorigenesis. As a newly identified lncRNA, the role of XIST in colorectal cancer (CRC) has not been established. Here, we sought to characterize the role of XIST and its associated regulatory network in CRC cells. Methods Expression of XIST mRNA, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of CRC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and confirmed using a dual-luciferase reporter assay. Expression of FOXK1 protein was quantified by Western blot. Results XIST and FOXK1 expression were significantly upregulated in CRC tissues and cell lines, while miR-497-5p expression was downregulated. XIST knockdown significantly suppressed CRC cell proliferation, migration, and invasion. Silencing of XIST also reversed the downregulation of miR-497-5p and upregulation of FOXK1. Moreover, blocking XIST expression was shown to inhibit CRC tumor growth in vivo and the effects were antagonized by the loss of miR-497-5p. miR-497-5p was shown to act as a sponge of XIST and also targeted FOXK1 in CRC cells. Conclusions XIST was shown to promote the malignancy of CRC cells by competitively binding to miR-497-5p, resulting in an increase in FOXK1 expression. These results suggest that targeting of XIST may represent a possible treatment for CRC.

2020 ◽  
Author(s):  
Nan Wang ◽  
Jia-Xing He ◽  
Guo-Zhan Jia ◽  
Ke Wang ◽  
Shuai Zhou ◽  
...  

Abstract Background: Recent studies suggest that long noncoding RNAs (lncRNAs) play an important role in tumorigenesis. As a newly identified lncRNA, the role of XIST in colorectal cancer (CRC) has not been established. Here, we sought to characterize the role of XIST and its associated regulatory network in CRC cells. Methods: Expression of XIST mRNA, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of CRC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and confirmed using a dual-luciferase reporter assay. Expression of FOXK1 protein was quantified by Western blot. Results: XIST and FOXK1 expression were significantly upregulated in CRC tissues and cell lines, while miR-497-5p expression was downregulated. XIST knockdown significantly suppressed CRC cell proliferation, migration, and invasion. Silencing of XIST also reversed the downregulation of miR-497-5p and upregulation of FOXK1. Moreover, blocking XIST expression was shown to inhibit CRC tumor growth in vivo and the effects were antagonized by the loss of miR-497-5p. miR-497-5p was shown to act as a sponge of XIST and also targeted FOXK1 in CRC cells.Conclusion: XIST was shown to promote the malignancy of CRC cells by competitively binding to miR-497-5p, resulting in an increase in FOXK1 expression. These results suggest that targeting of XIST may represent a possible treatment for colon cancer.


2020 ◽  
Author(s):  
Nan Wang ◽  
Jia-Xing He ◽  
Guo-Zhan Jia ◽  
Ke Wang ◽  
Shuai Zhou ◽  
...  

Abstract Background: Recent studies suggest that long noncoding RNAs (lncRNAs) play an important role in tumorigenesis. As a newly identified lncRNA, the role of XIST in colorectal cancer (CRC) has not been established. Here, we sought to characterize the role of XIST and its associated regulatory network in CRC cells.Methods: Expression of XIST mRNA, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of CRC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between XIST, miR-497-5p, and FOXK1 were predicted based on these results, and confirmed using a dual-luciferase reporter assay. Expression of FOXK1 protein was quantified by Western blot.Results: XIST and FOXK1 expression were significantly upregulated in CRC tissues and cell lines, while miR-497-5p expression was downregulated. XIST knockdown significantly suppressed CRC cell proliferation, migration, and invasion. Silencing of XIST also reversed the downregulation of miR-497-5p and upregulation of FOXK1. Moreover, blocking XIST expression was shown to inhibit CRC tumor growth in vivo and the effects were antagonized by the loss of miR-497-5p. miR-497-5p was shown to act as a sponge of XIST and also targeted FOXK1 in CRC cells.Conclusion: XIST was shown to promote the malignancy of CRC cells by competitively binding to miR-497-5p, resulting in an increase in FOXK1 expression. These results suggest that targeting of XIST may represent a possible treatment for colon cancer.


2020 ◽  
Author(s):  
Nan Wang ◽  
Jia-Xing He ◽  
Guo-Zhan Jia ◽  
Ke Wang ◽  
Shuai Zhou ◽  
...  

Abstract Background: Recently, accumulated numbers of studies have reported that long noncoding RNAs (lncRNAs) process an important role in tumorigenesis. As a new member found in lncRNAs, the role of lncRNA XIST (XIST) in colorectal cancer (CRC) was still elusive. The objective of this study was conducted to characterize a novel regulatory network involving XIST in CRC cells. Methods: The mRNAs of XIST, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). And the proliferation and apoptosis of CRC cells were determined using cell counting kit-8 assay and flow cytometry. Moreover, we also detected the cell migration and invasion using Transwell assays. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and then the dual-luciferase reporter assay was used to their relationships. The protein level of FOXK1 was quantitated using western blot. Results: In CRC tissues and cell lines, XIST expression was up-regulated, in which also existed miR-497-5p down-regulation and FOXK1 up-regulation. XIST knockdown suppressed CRC cell proliferation and migration as well as its invasion. Moreover, blocking the XIST expression could inhibit CRC tumor growth in vivo and the effects were antagonized by loss of miR-497-5p. miR-497-5p was identified as a sponge of XIST and also targeted FOXK1 in CRC cells. Besides, XIST silencing-mediated inhibitory activity against CRC progression reversed miR-497-5p down-regulation or FOXK1 up-regulation. Conclusion: In conclusion, XIST promotes the malignancy of colon cancer cells partly by competitively binding to miR-497-5p, which then led to increased FOXK1 expression. We conclude that targeting XIST may be a possible treatment for colon cancer.


Author(s):  
Xinping Chen ◽  
Weihua Xu ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Junjie Hu ◽  
...  

Background: Increasing circular RNAs (circRNAs) are reported to participate in cancer progression. Nonetheless, the role of circRNAs in nasopharyngeal carcinoma (NPC) has not been fully clarified. This work is aimed to probe the role of circ_0000215 in NPC.Methods: Circ_0000215 expression in NPC tissues and cell lines was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) assay, 5-bromo-2′-deoxyuridine (BrdU) assay, scratch healing assay and Transwell experiment were executed to investigate the regulatory function of circ_0000215 on the proliferation, migration and invasion of NPC cells. RNA immunoprecipitation (RIP), pull-down and dual-luciferase reporter experiments were utilized to determine the binding relationship between circ_0000215 and miR-512-5p, and between miR-512-5p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) 3′UTR. The effects of circ_0000215 on NPC growth and metastasis in vivo were examined with nude mice model. Western blot was applied to detect the regulatory effects of circ_0000215 and miR-512-5p on PIK3R1 expression.Results: Circ_0000215 was overexpressed in NPC tissues and cell lines. The functional experiments confirmed that knockdown of circ_0000215 impeded the growth and metastasis of NPC cells in vitro and in vivo. Additionally, circ_0000215 could also work as a molecular sponge to repress miR-512-5p expression. PIK3R1 was validated as a target gene of miR-512-5p, and circ_0000215 could increase the expression level of PIK3R1 in NPC cells via suppressing miR-512-5p.Conclusion: Circ_0000215 is overexpressed in NPC and exerts oncogenic effects in NPC through regulating miR-512-5p/PIK3R1 axis.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Xiaohui Duan ◽  
Wei Li ◽  
Peng Hu ◽  
Bo Jiang ◽  
Jianhui Yang ◽  
...  

Abstract Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors worldwide. The present study aimed to investigate the biological role of microRNA-183-5p (miR-183-5p), a novel tumor-related microRNA (miRNA), in HCC and illuminate the possible molecular mechanisms. The expression patterns of miR-183-5p in clinical samples were characterized using qPCR analysis. Kaplan–Meier survival curve was applied to evaluate the correlation between miR-183-5p expression and overall survival of HCC patients. Effects of miR-183-5p knockdown on HCC cell proliferation, apoptosis, migration and invasion capabilities were determined via Cell Counting Kit-8 (CCK8) assays, flow cytometry, scratch wound healing assays and Transwell invasion assays, respectively. Mouse neoplasm transplantation models were established to assess the effects of miR-183-5p knockdown on tumor growth in vivo. Bioinformatics analysis, dual-luciferase reporter assays and rescue assays were performed for mechanistic researches. Results showed that miR-183-5p was highly expressed in tumorous tissues compared with adjacent normal tissues. Elevated miR-183-5p expression correlated with shorter overall survival of HCC patients. Moreover, miR-183-5p knockdown significantly suppressed proliferation, survival, migration and invasion of HCC cells compared with negative control treatment. Consistently, miR-183-5p knockdown restrained tumor growth in vivo. Furthermore, programmed cell death factor 4 (PDCD4) was identified as a direct target of miR-183-5p. Additionally, PDCD4 down-regulation was observed to abrogate the inhibitory effects of miR-183-5p knockdown on malignant phenotypes of HCC cells. Collectively, our data suggest that miR-183-5p may exert an oncogenic role in HCC through directly targeting PDCD4. The current study may offer some new insights into understanding the role of miR-183-5p in HCC.


Author(s):  
Xuhui Fan ◽  
Meng Liu ◽  
Li Fei ◽  
Zhihui Huang ◽  
Yufeng Yan

Circular RNA (circRNA) is a key regulator of tumor progression. However, the role of circFOXM1 in glioblastoma (GBM) progression is unclear. The aim of this study was to investigate the role of circFOXM1 in GBM progression. The expression levels of circFOXM1, miR-577 and E2F transcription factor 5 (E2F5) were examined by real-time quantitative PCR. Cell counting kit 8 assay, EdU staining and transwell assay were used to detect cell proliferation, migration, and invasion. The levels of glutamine, glutamate and α-ketoglutarate were determined to evaluate the glutaminolysis ability of cells. Protein expression was tested by western blot analysis. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were employed to verify the interaction between miR-577 and circFOXM1 or E2F5. Mice xenograft model for GBM was constructed to perform in vivo experiments. Our results showed that circFOXM1 was highly expressed in GBM tumor tissues and cells. Silencing of circFOXM1 inhibited GBM cell proliferation, migration, invasion, glutaminolysis, as well as tumor growth. MiR-577 could be sponged by circFOXM1, and its inhibitor could reverse the suppressive effect of circFOXM1 downregulation on GBM progression. E2F5 was a target of miR-577, and the effect of its knockdown on GBM progression was consistent with that of circFOXM1 silencing. CircFOXM1 positively regulated E2F5 expression, while miR-577 negatively regulated E2F5 expression. In conclusion, our data confirmed that circFOXM1 could serve as a sponge of miR-577 to enhance the progression of GBM by targeting E2F5, which revealed that circFOXM1 might be a biomarker for GBM treatment.


2018 ◽  
Vol 51 (3) ◽  
pp. 1364-1375 ◽  
Author(s):  
Dan Fei ◽  
Xiaona Zhang ◽  
Jinxiang Liu ◽  
Long Tan ◽  
Jie Xing ◽  
...  

Background/Aims: Novel long non-coding RNA Fer-1-like protein 4 (FER1L4) has been reported to play crucial regulatory roles in tumor progression. However, its clinical significance and biological role in osteosarcoma (OS) is completely unknown. The aim of the present study was to investigate the role of FER1L4 in OS progression and the underlying mechanism. Methods: We analyzed the expression levels of FER1L4 in tissues of OS patients and cell lines via quantitative RT-PCR (qRT-PCR). The effect of FER1L4 on cell proliferation, colony formation, migration and invasion was analyzed by cell counting kit-8 (CCK-8), colony formation, wound healing and transwell invasion assay, respectively. Novel targets of FER1L4 were selected through a bioinformatics soft and confirmed using a dual-luciferase reporter system and qRT-PCR. To detect the role of FER1L4 in vivo tumorigenesis, tumor xenografts were created. Results: We found that the expression of FER1L4 was significantly downregulated in OS tissues and cell lines; moreover, low expression of FER1L4 was associated with advanced tumor-nude-metastasis (TNM) stage, lymph node metastases, and poor overall survival. Functional assays showed that upregulation of FER1L4 significantly inhibited OS cell proliferation, colony formation, migration, and invasion in vitro, as well as suppressed tumor growth in vivo. Assays performed to determine the underlying mechanism, indicated that FER1L4 interacted directly with miR-18a-5p. Subsequently, we found that FER1L4 significantly increased PTEN expression, a known target of miR-18a-5p, in OS cells. Furthermore, PTEN was found to be down-regulated, and positively correlated with FER1L4 in OS tissues. Conclusion: These findings suggest that FER1L4, acting as a competing endogenous RNA (ceRNA) of miR-18a-5p, exerts its anti-cancer role by modulating the expression of PTEN. Thus, FER1L4 may be a novel target for the prevention and treatment of OS.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Lili Zhou ◽  
Xiao Jia ◽  
Xiangzheng Yang

Abstract Background Previous studies indicated that lncRNA taurine upregulated gene 1 (TUG1) played essential roles in human cancers. This study aimed to investigate its function in infantile hemangioma (IH). Methods A total of 30 pairs of clinical infantile specimens were used in this study. The expression of TUG1 in IH tissues was assessed by quantitative reverse transcriptase PCR (qRT-PCR). Two short hairpin RNA targeting TUG1 (sh-TUG1-1 and sh-TUG1-2) were transfected into hemangioma-derived endothelial cells, HemECs, to block its expression. The effects of TUG1 on HemECs were evaluated by Cell Counting Kit-8 (CCK-8), colony formation assay, wound healing assay, and Transwell assay. The underlying molecular mechanism of TUG1 was investigated by Starbase prediction and luciferase reporter assay and further determined by loss- and gain-of-function approaches. In addition, the role of TUG1 on tumorigenesis of HemECs was confirmed in an in vivo mouse model. Results TUG1 was significantly upregulated in infant hemangioma tissues compared with normal adjacent subcutaneous tissues. The loss- and gain-of-function approaches indicated that TUG1 overexpression promoted proliferation, migration, and invasion of HemECs in vitro, and TUG1 knockdown inhibited the tumorigenesis of HemECs in vivo. Specifically, TUG1 could compete with IGFBP5 for miR137 binding. Rescue experiments further confirmed the role of the TUG1/miR137/IGFBP5 axis in HemECs. Conclusion TUG1 was closely associated with the progression of IH by regulating the miR-137/IGFBP5 axis, which might be a potential target for IH treatment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lei Gao ◽  
Xiaolong Tang ◽  
Qingsi He ◽  
Guorui Sun ◽  
Chao Wang ◽  
...  

AbstractCircular RNAs (circRNA) are abundantly present in the exosome. Yet, the role of exosome-transmitted circRNA in colorectal cancer (CRC) remains unclear. In this study, we examined the function and mechanism of circCOG2 in CRC. We analyzed the expression of circCOG2 in CRC tissues, plasmas, and exosomes by qRT-PCR. The function of circCOG2 was evaluated by CCK-8, clone formation, transwell and wound healing assay, and using an in vivo study; while its mechanism was analyzed using a dual luciferase reporter assay, RNA pull-down assay, Western blot, and rescue experiments. We found that circCOG2 was increased in CRC tissues, plasmas, and exosomes. Upregulated circCOG2 promoted CRC proliferation, migration, and invasion through the miR-1305/TGF-β2/SMAD3 pathway, and this effect could be transmitted from CRC cells with the high metastatic potential to CRC cells with low metastatic potential by exosomes. Our results revealed that circCOG2 is correlated with poor prognosis and may be used as a therapeutic target for CRC.


2021 ◽  
Vol 49 (12) ◽  
pp. 030006052110546
Author(s):  
Yuhe Duan ◽  
He Wu ◽  
Xiwei Hao ◽  
Fujiang Li ◽  
Jie Liu ◽  
...  

Objective Hepatoblastoma is the most common liver tumor. Recent research has found that long non-coding (lnc)RNAs are involved in multiple types of cancers, but the potential mechanism of lncRNA MIR210HG in hepatoblastoma remains unknown. The present study explored the molecular mechanism of MIR210HG in hepatoblastoma progression. Methods The cell counting kit-8 was used to detect cell viability, and Transwell assays assessed cell migration and invasion. Luciferase reporter assays showed the relationship between MIR210HG and microRNA (miR)-608 and between miR-608 and forkhead box O6 (FOXO6). Functional tests were verified in vivo by a tumor xenograft model. The expression of MIR210HG, miR-608, FOXO6, E-cadherin, N-cadherin, and vimentin was determined by quantitative reverse transcription polymerase chain reaction and western blotting. Results MIR210HG was shown to be highly expressed in hepatoblastoma tissues and cell lines. Knockdown of MIR210HG reduced proliferation, migration, and invasion in liver cancer cells, and suppressed tumor growth in vivo. MIR210HG competitively combined with miR-608, and miR-608 decreased FOXO6 expression. Conclusion Our study demonstrated that knockdown of MIR210HG inhibits hepatoblastoma development through binding to miR-608 and downregulating FOXO6. Our results provide novel insights for hepatoblastoma treatment involving the MIR210HG–miR608–FOXO6 axis.


Sign in / Sign up

Export Citation Format

Share Document