scholarly journals MiR-613 inhibits the proliferation, migration, and invasion of papillary thyroid carcinoma cells by directly targeting TAGLN2

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yonglian Huang ◽  
Hengwei Zhang ◽  
Lidong Wang ◽  
Chenxi Liu ◽  
Mingyue Guo ◽  
...  

Abstract Background Papillary thyroid carcinoma (PTC), with a rapidly increasing incidence, is the most prevalent malignant cancer of the thyroid. However, its pathogenesis is unclear and its specific clinical indicators have not yet been identified. There is increasing evidence that microRNAs (miRNAs) play important roles in tumor occurrence and progression. Specifically, miR-613 participates in the regulation of tumor development in various cancers; however, its effects and mechanisms of action in PTC are still unclear. Therefore, in this study, we investigated the expression and function of miR-613 in PTC. Methods qRT-PCR was used to determine miR-613 expression in 107 pairs of PTC and adjacent-normal tissues as well as in PTC cell lines and to detect TAGLN2 mRNA expression in PTC tissues and adjacent normal tissues. Western blot analysis was performed to identify TAGLN2 and epithelial–mesenchymal transition (EMT) biomarkers. The effects of miR-613 on PTC progression were evaluated by performing MTS, wound-healing, and Transwell assays in vitro. Luciferase reporter assays were also performed to validate the target of miR-613. Results In PTC, miR-613 was significantly downregulated and its low expression level was associated with cervical lymph node metastasis. However, its overexpression significantly suppressed PTC cell proliferation, migration, and invasion and inhibited EMT. TAGLN2 was identified as a target of miR-613, which also significantly inhibited the expression of TAGLN2. Further, the restoration of TAGLN2 expression attenuated the inhibitory effects of miR-613 on PTC cell proliferation and metastasis. Conclusion Our findings demonstrated that miR-613 can suppress the progression of PTC cells by targeting TAGLN2, indicating that miR-613 plays the role of a tumor suppressor in PTC. Overall, these results suggest that the upregulation of miR-613 is a promising therapeutic strategy for PTC.

2020 ◽  
Vol 43 (6) ◽  
pp. 1017-1033 ◽  
Author(s):  
Yizhi Xiao ◽  
Side Liu ◽  
Jiaying Li ◽  
Weiyu Dai ◽  
Weimei Tang ◽  
...  

Abstract Purpose Growing evidence indicates that aberrant expression of microRNAs contributes to tumor development. However, the biological role of microRNA-4490 (miR-4490) in gastric cancer (GC) remains to be clarified. Methods To explore the function of miR-4490 in GC, we performed colony formation, EdU incorporation, qRT-PCR, Western blotting, in situ hybridization (ISH), immunohistochemistry (IHC), flow cytometry, ChIP and dual-luciferase reporter assays. In addition, the growth, migration and invasion capacities of GC cells were evaluated. Results We found that miR-4490 was significantly downregulated in primary GC samples and in GC-derived cell lines compared with normal controls, and that this expression level was negatively correlated with GC malignancy. Exogenous miR-4490 expression not only reduced cell cycle progression and proliferation, but also significantly inhibited GC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, we found that miR-4490 directly targets USP22, which mediates inhibition of GC cell proliferation and EMT-induced metastasis in vitro and in vivo. Moreover, we found through luciferase and ChIP assays that transcription factor POU2F1 can directly bind to POU2F1 binding sites within the miR-4490 and USP22 promoters and, by doing so, modulate their transcription. Spearman’s correlation analysis revealed a positive correlation between USP22 and POU2F1 expression and negative correlations between miR-4490 and USP22 as well as miR-4490 and POU2F1 expression in primary GC tissues. Conclusion Based on our results we conclude that miR-4490 acts as a tumor suppressor, and that the POU2F1/miR-4490/USP22 axis plays an important role in the regulation of growth, invasion and EMT of GC cells.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


2018 ◽  
Vol 96 (5) ◽  
pp. 619-626 ◽  
Author(s):  
Yuanqiang Lin ◽  
Qingjie Ma ◽  
Lin Li ◽  
Hui Wang

Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy involving local and distant metastasis. It is known that CXC chemokine ligand 12 (CXCL12) interacts specifically with CXC chemokine receptor 4 (CXCR4) to guide the migration of PTC cells. However, the signaling pathway downstream of the CXCL12–CXCR4 axis in PTC is not fully understood. In the present study, high expression of CXCR4 was detected in 38 out of 82 specimens of PTC, and the expression level of CXCR4 significantly correlated with the stage of PTC. Additionally, the roles of the CXCL12–CXCR4 axis in the migration, invasion, and epithelial–mesenchymal transition (EMT) of B-CPAP cells were investigated in vitro. The motility and invasiveness were significantly enhanced in CXCR4-overexpressing B-CPAP cells with CXCL12 treatment. Moreover, the CXCL12–CXCR4 axis promoted the EMT process, as evidenced by a decreased level of E-cadherin and increased expressions of N-cadherin and vimentin. Furthermore, the CXCL12–CXCR4 axis activated the nuclear factor kappa-B (NF-κB) signaling pathway, whereas BAY11-7082, an IκB phosphorylation inhibitor, counteracted CXCL12–CXCR4-induced migration, invasion, and EMT processes in B-CPAP cells. In conclusion, the CXCL12–CXCR4 axis promotes the migration, invasion, and EMT processes in B-CPAP cells, at least partly, by activating the NF-κB signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Qin Chen ◽  
Wen-Ying Yu ◽  
Huan-Huan Zhang ◽  
Song-Zhao Zhang ◽  
Jie Fang ◽  
...  

PBX3 (Pre-B-cell leukemia homeobox 3) had been considered to be a multifunctional oncogene which involved in tumor growth, invasion, and metastasis in leukemia and some solid tumors. However, the contribution of PBX3 to papillary thyroid carcinoma (PTC) remains unclear. In this study, we found that PBX3 expression was significantly upregulated in PTC tissues compared to adjacent normal tissues, and high levels of PBX3 were correlated with tumor size, lymphatic metastasis, TMN stage, and poor prognosis of PTC patients. Overexpression of PBX3 in PTC cell lines promoted cell proliferation. Consistently, knockdown of PBX3 by shRNA induced cell cycle arrest at G0/G1 phase, and inhibited angiogenesis and tumor growth in vitro and in vivo. Furthermore, PBX3 promoted PTC cell proliferation and angiogenesis through activation of AT1R/VEGFR2 pathway while overexpression of AT1R and treatment with VEGFA reversed PBX3-shRNA-induced decreased phosphorylation of VEGFR2 and its downstream (ERK1/2, AKT and Src). It demonstrated that PBX3 could be used as a potential prognostic biomarker and therapeutic target for PTC.


2016 ◽  
Vol 38 (2) ◽  
pp. 836-846 ◽  
Author(s):  
Liyang Dong ◽  
Junwei Ni ◽  
Wenhao Hu ◽  
Chang Yu ◽  
Haiyan Li

Background/Aims: PlncRNA-1 has been demonstrated to promote malignancy in various cancers. The present study aims to investigate the expression pattern, prognosis value and the function of PlncRNA-1 in human hepatocellular carcinoma (HCC). Methods: The expression of PlncRNA-1 in 84 pairs of HCC and their matched normal tissues was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The correlations of PlncRNA-1 expression and clinicopathological characteristics and prognosis were also analyzed. The biological role of PlncRNA-1 in cell proliferation, migration and invasion was examined in vitro and in vivo. Results: The results showed that the level of PlncRNA-1 expression was significantly increased in HCC tissues and significantly correlated with tumor size, vascular invasion and advanced TNM stage. Moreover, patients with high levels of PlncRNA-1 expression had relatively poor prognostic outcomes, serving as an independent prognostic factor for HCC. In vitro functional assays indicated that knockdown of PlncRNA-1 expression significantly reduced cell proliferation, migration and invasion by inhibiting the epithelial-mesenchymal transition (EMT) signaling. Animal model experiments confirmed the ability of PlncRNA-1 to promote tumor growth in vivo. Conclusions: Taken together, our findings suggest that PlncRNA-1 may serve as an oncogene in HCC progression and represent a valuable prognostic marker and potential therapeutic target for HCC.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110083
Author(s):  
Zhenya Gao ◽  
Fang Yu ◽  
Huanxia Jia ◽  
Zhuo Ye ◽  
Shijie Yao

Objective To detect the expression of FK506-binding protein 5 (FKBP5) in human papillary thyroid carcinoma (PTC) tissues, and explore its possible role in the progression of PTC. Methods FKBP5 expression levels were assessed in 115 PTC tissues and corresponding normal tissues by immunohistochemistry. We also examined the correlations between FKBP5 expression and clinicopathological factors and survival in 75 patients with PTC. The effects of FKBP5 on the proliferation and apoptosis of PTC cells were detected by colony-formation, MTT, and flow cytometry assays, respectively. We further investigated the effects of FKBP5 on tumor growth in mice. Results We revealed high expression levels of FKBP5 in human PTC tissues compared with normal tissues. Furthermore, high FKBP5 expression was associated with an increased incidence of intraglandular dissemination, and lower overall and progression-free survival. FKBP5 depletion remarkably suppressed the proliferation and induced apoptosis of PTC cells in vitro. FKBP5 further contributed to the growth of PTC tumors in mice. Conclusions The results of this study demonstrated the potential involvement of FKBP5 in the progression of PTC, and confirmed FKBP5 as a novel therapeutic target for PTC treatment.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 921-931
Author(s):  
Juan Zhao ◽  
Xue-Bin Zeng ◽  
Hong-Yan Zhang ◽  
Jie-Wei Xiang ◽  
Yu-Song Liu

AbstractLong non-coding RNA forkhead box D2 adjacent opposite strand RNA 1 (FOXD2-AS1) has emerged as a potential oncogene in several tumors. However, its biological function and potential regulatory mechanism in glioma have not been fully investigated to date. In the present study, RT-qPCR was conducted to detect the levels of FOXD2-AS1 and microRNA (miR)-506-5p, and western blot assays were performed to measure the expression of CDK2, cyclinE1, P21, matrix metalloproteinase (MMP)7, MMP9, N-cadherin, E-cadherin and vimentin in glioma cells. A luciferase reporter assay was performed to verify the direct targeting of miR-506-5p by FOXD2-AS1. Subsequently, cell viability was analyzed using the CCK-8 assay. Cell migration and invasion were analyzed using Transwell and wound healing assays, respectively. The results demonstrated that FOXD2-AS1 was significantly overexpressed in glioma cells, particularly in U251 cells. Knockdown of FOXD2-AS1 in glioma cells significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) and regulated the expression of CDK2, cyclinE1, P21, MMP7 and MMP9. Next, a possible mechanism for these results was explored, and it was observed that FOXD2-AS1 binds to and negatively regulates miR-506-5p, which is known to be a tumor-suppressor gene in certain human cancer types. Furthermore, overexpression of miR-506-5p significantly inhibited cell proliferation, migration, invasion and EMT, and these effects could be reversed by transfecting FOXD2-AS1 into the cells. In conclusion, our data suggested that FOXD2-AS1 contributed to glioma proliferation, metastasis and EMT via competitively binding to miR-506-5p. FOXD2-AS1 may be a promising target for therapy in patients with glioma.


Sign in / Sign up

Export Citation Format

Share Document