scholarly journals Demonstration of indigenous malaria elimination through Track-Test-Treat-Track (T4) strategy in a Malaria Elimination Demonstration Project in Mandla, Madhya Pradesh

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Praveen K. Bharti ◽  
Harsh Rajvanshi ◽  
Sekh Nisar ◽  
Himanshu Jayswar ◽  
Kalyan B. Saha ◽  
...  

Abstract Background Many malaria endemic countries are heading towards malaria elimination through the use of case management and vector control strategies, which employ surveillance, improving access to early diagnosis, prompt treatment., and integrated vector control measures. There is a consensus that elimination of malaria is feasible when rapid detection and prompt treatment is combined with mosquito-human contact interruption in an efficient and sustainable manner at community levels. This paper describes results of an integrated case management and vector control strategy for reducing malaria cases in 1233 villages over 3 years in district Mandla, Madhya Pradesh, India. Methods The project enrolled the entire population (1,143,126) of Mandla district for fever surveillance followed by testing of febrile cases and treatment of positive subjects using T4 strategy, which is Track (by fever), Test (by RDTs), Treat (by ACT) and Track (for completion of treatment). In addition to the active and passive surveillance for detection and treatment of febrile cases, the project conducted mass screening and treatment to clear the asymptomatic reservoirs of infection. Febrile cases were also tested in the out-patient department of the District Hospital from June 2018 to September, 2018 and in a community-based medical camp from November 7 to 14, 2019. The project also used vector control measures for interrupting human-mosquito contact, and information, education and communication (IEC) campaigns to increase demand for malaria services at community level. Results This project has revealed about 91% reduction of indigenous cases of malaria during the period from June 2017 to May 2020, through case management and vector control strategies. A total 357,143 febrile cases were screened, out of which 0.19% were found positive for the presence of malaria parasites, with Plasmodium falciparum and Plasmodium vivax ratio of 62:38. The prevalence of malaria was higher in individuals > 15 years of age (69% cases). The positivity rate was 0.33% in 2017–18, 0.13% in 2018–19, and 0.06% in 2019–20. In all of the 3 years of the project, the peak transmission correlated with rains. Mass screening revealed 0.18% positivity in Sep-Oct 2018, followed by 0.06% in June 2019, and 0.03% in December 2019, and these were mostly asymptomatic cases in the community. Imported cases into the district were mostly contributed by the distant state of Telangana (51.13%). Fever patients tested for malaria parasites in the District Hospital and medical camp revealed zero cases. Conclusion Using the current intervention and prevention tools along with optimum utilization of human resources, a 91% reduction in indigenous cases of malaria was seen in the district in 3 years. The reduction was similar in the three high prevalence blocks of the district. These results reveal that malaria elimination is achievable in India within a stipulated time frame. The reduction of malaria at the community level was further validated when zero malaria cases were diagnosed during hospital and community-based studies in Mandla. Prompt detection and treatment of imported/migratory cases may have prevented outbreaks in the district. This project has demonstrated that field programmes backed by adequate technical, management, operational, and financial controls with robust monitoring are needed for achieving malaria elimination.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Praveen K. Bharti ◽  
Sekh Nisar ◽  
Himanshu Jayswar ◽  
Ashok K. Mishra ◽  
...  

Abstract Background Malaria Elimination Demonstration Project (MEDP) was started as a Public-Private-Partnership between the Indian Council of Medical Research through National Institute of Research in Tribal Health, Govt. of Madhya Pradesh and Foundation of Disease Elimination and Control of India, which is a Corporate Social Responsibility (CSR) initiative of the Sun Pharmaceutical Industries Limited. The project’s goal was to demonstrate that malaria can be eliminated from a high malaria endemic district along with prevention of re-establishment of malaria and to develop a model for malaria elimination using the lessons learned and knowledge acquired from the demonstration project. Methods The project employed tested protocols of robust surveillance, case management, vector control, and capacity building through continuous evaluation and training.  The model was developed using the learnings from the operational plan, surveillance and case management, monitoring and feedback, entomological investigations and vector control, IEC and capacity building, supply chain management, mobile application (SOCH), and independent reviews of MEDP. Results The MEDP has been operational since April 2017 with field operations from August 2017, and has observed: (1) reduction in indigenous cases of malaria by about 91 %; (2) need for training and capacity building of field staff for diagnosis and treatment of malaria; (3) need for improvement insecticide spraying and for distribution and usage of bed-nets; (4) need for robust surveillance system that captures and documents information on febrile cases, RDT positive individuals, and treatments provided; (5) need for effective supervision of field staff based on advance tour plan; (6) accountability and controls from the highest level to field workers; and (7) need for context-specific IEC. Conclusions Malaria elimination is a high-priority public health goal of the Indian Government with a committed deadline of 2030. In order to achieve this goal, built-in systems of accountability, ownership, effective management, operational, technical, and financial controls will be crucial components for malaria elimination in India. This manuscript presents a model for malaria elimination with district as an operational unit, which may be considered for malaria elimination in India and other countries with similar geography, topography, climate, endemicity, health infrastructure, and socio-economic characteristics.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Sekh Nisar ◽  
Praveen K. Bharti ◽  
Himanshu Jayswar ◽  
Ashok K. Mishra ◽  
...  

Abstract Background The Malaria Elimination Demonstration Project (MEDP) maintained a workforce of 235 Village Malaria Workers (VMWs) and 25 Malaria Field Coordinators (MFCs) to conduct disease surveillance, case management, IEC/BCC activities, capacity building, and monitoring of vector control activities in 1233 villages of Mandla, a high malaria endemic district of Madhya Pradesh in central India. Methods The induction training was conducted for 3 days on malaria diagnosis, treatment, prevention, and ethics. All trainings were assessed using a pre and post-training assessment questionnaire, with 70% marks as qualifying threshold. The questionnaire was divided into three thematic areas viz. general knowledge related to malaria (KAP), diagnosis and treatment (DXRX), and vector control (PVC). Results In 2017, the project trained 330 candidates, followed by 243 and 247 candidates in 2018 and 2019, respectively. 94.3% candidates passed after a single training session. Almost all (95%) candidates showed improvement in knowledge after the training with 4% showing no effect and 1% showing deterioration. Progressive improvement in scores of 2017 cohort was seen along with significant improvement in performance of candidates in 2019 after the introduction of systematic monitoring and ‘shadowing’ training exercises. Conclusion The project has successfully demonstrated the value of recruitment of workers from the study area, outcome of training, and performance evaluation of field staff in malaria elimination programme. This careful strategy of recruitment and training resulted in a work-force that was capable of independently conducting surveillance, case management, vector control, and Information Education Communication/Behaviour Change Communication (IEC/BCC). The learnings of this study, including the training modules and monitoring processes, can be used to train the health delivery staff for achieving national goal for malaria elimination by 2030. Similar training and monitoring programmes could also be used for other public health delivery programmes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdou Talipouo ◽  
Konstantinos Mavridis ◽  
Elysée Nchoutpouen ◽  
Borel Djiappi-Tchamen ◽  
Emmanouil Alexandros Fotakis ◽  
...  

AbstractCulex mosquitoes particularly Culex quinquefasciatus are important arboviral and filariasis vectors, however despite this important epidemiological role, there is still a paucity of data on their bionomics. The present study was undertaken to assess the insecticide resistance status of Cx. quinquefasciatus populations from four districts of Yaoundé (Cameroon). All Culex quinquefasciatus populations except one displayed high resistance to bendiocarb and malathion with mortalities ranging from 0 to 89% while high resistance intensity against both permethrin and deltamethrin was recorded. Molecular analyses revealed high frequencies of the ACE-1 G119S mutation (ranging from 0 to 33%) and kdr L1014F allele (ranging from 55 to 74%) in all Cx. quinquefasciatus populations. Significant overexpression was detected for cytochrome P450s genes CYP6AA7 and CYP6Z10, as well as for Esterase A and Esterase B genes. The total cuticular hydrocarbon content, a proxy of cuticular resistance, was significantly increased (compared to the S-lab strain) in one population. The study confirms strong insecticide resistance mediated by different mechanisms in Cx. quinquefasciatus populations from the city of Yaoundé. The expansion of insecticide resistance in Culex populations could affect the effectiveness of current vector control measures and stress the need for the implementation of integrated vector control strategies in urban settings.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Monnaphat Jongdeepaisal ◽  
Mom Ean ◽  
Chhoeun Heng ◽  
Thoek Buntau ◽  
Rupam Tripura ◽  
...  

Abstract Background In the Greater Mekong Subregion, adults are at highest risk for malaria, particularly those who visit forests. The absence of effective vector control strategies and limited periods of exposure during forest visits suggest that chemoprophylaxis could be an appropriate strategy to protect forest goers against malaria. Methods Alongside a clinical trial of anti-malarial chemoprophylaxis in northern Cambodia, qualitative research was conducted, including in-depth interviews and observation, to explore the acceptability of malaria prophylaxis for forest goers, the implementation opportunities, and challenges of this strategy. Results Prophylaxis with artemether–lumefantrine for forest goers was found to be acceptable under trial conditions. Three factors played a major role: the community’s awareness and perception of the effectiveness of prophylaxis, their trust in the provider, and malaria as a local health concern. The findings highlight how uptake and adherence to prophylaxis are influenced by the perceived balance between benefits and burden of anti-malarials which are modulated by the seasonality of forest visits and its influence on malaria risk. Conclusions The implementation of anti-malarial prophylaxis needs to consider how the preventive medication can be incorporated into existing vector-control measures, malaria testing and treatment services. The next step in the roll out of anti-malarial prophylaxis for forest visitors will require support from local health workers.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Praveen K. Bharti ◽  
Sekh Nisar ◽  
Yashpal Jain ◽  
Himanshu Jayswar ◽  
...  

Abstract Background In the past decade substantial reduction in malaria morbidity and mortality has been observed through well-implemented case management and vector control strategies. India has also achieved a significant reduction in malaria burden in 2018 and has committed to eliminate malaria by 2030. The Mandla Malaria Elimination Demonstration Project (MEDP) was started in 2017 in 1233 villages of District Mandla to demonstrate malaria elimination in a tribal district with hard-to-reach areas was possible using active and passive surveillance, case management, vector control, and targeted information, education and communication campaigns. An operational plan was developed to strengthen the existing surveillance and malaria elimination systems, through fortnightly active case detection to ensure that all cases including those that are introduced into the communities are rapidly identified and treated promptly. The plan also focused on the reduction of human-mosquito contact through the use of Long-Lasting Insecticial Nets (LLINs) and Indoor Residual Spray (IRS). The operational plan was modified in view of the present COVID-19 pandemic by creating systems of assistance for the local administration for COVID-related work while ensuring the operational integrity of malaria elimination efforts. Results The use of MEDP study design and operational plan, with its built-in management control systems, has yielded significant (91%) reduction of indigenous cases of malaria during the period from June 2017 to May 2020. The malaria positivity rate was 0.33% in 2017–18, 0.13% in 2018–19, and 0.06% in 2019–20. Mass screening revealed 0.18% malaria positivity in September–October 2018, followed by 0.06% in June 2019, and 0.03% in December 2019, and these were mostly asymptomatic cases in the community. The project has been able to sustain the gains of the past three years during the ongoing COVID-19 pandemic. Conclusion This paper provides the study design and the operational plan for malaria elimination in a high-burden district of Central India, which presented difficulties of hard to reach areas, forest malaria, and complex epidemiology of urban and rural malaria. The lessons learned could be used for malaria elimination efforts in rest of the country and other parts of South Asia with comparable demography and epidemiology.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Arthur Mpimbaza ◽  
Asadu Sserwanga ◽  
Damian Rutazaana ◽  
James Kapisi ◽  
Richard Walemwa ◽  
...  

Abstract Background The World Health Organization (WHO) promotes long-lasting insecticidal nets (LLIN) and indoor residual house-spraying (IRS) for malaria control in endemic countries. However, long-term impact data of vector control interventions is rarely measured empirically. Methods Surveillance data was collected from paediatric admissions at Tororo district hospital for the period January 2012 to December 2019, during which LLIN and IRS campaigns were implemented in the district. Malaria test positivity rate (TPR) among febrile admissions aged 1 month to 14 years was aggregated at baseline and three intervention periods (first LLIN campaign; Bendiocarb IRS; and Actellic IRS + second LLIN campaign) and compared using before-and-after analysis. Interrupted time-series analysis (ITSA) was used to determine the effect of IRS (Bendiocarb + Actellic) with the second LLIN campaign on monthly TPR compared to the combined baseline and first LLIN campaign periods controlling for age, rainfall, type of malaria test performed. The mean and median ages were examined between intervention intervals and as trend since January 2012. Results Among 28,049 febrile admissions between January 2012 and December 2019, TPR decreased from 60% at baseline (January 2012–October 2013) to 31% during the final period of Actellic IRS and LLIN (June 2016–December 2019). Comparing intervention intervals to the baseline TPR (60.3%), TPR was higher during the first LLIN period (67.3%, difference 7.0%; 95% CI 5.2%, 8.8%, p < 0.001), and lower during the Bendiocarb IRS (43.5%, difference − 16.8%; 95% CI − 18.7%, − 14.9%) and Actellic IRS (31.3%, difference − 29.0%; 95% CI − 30.3%, − 27.6%, p < 0.001) periods. ITSA confirmed a significant decrease in the level and trend of TPR during the IRS (Bendicarb + Actellic) with the second LLIN period compared to the pre-IRS (baseline + first LLIN) period. The age of children with positive test results significantly increased with time from a mean of 24 months at baseline to 39 months during the final IRS and LLIN period. Conclusion IRS can have a dramatic impact on hospital paediatric admissions harbouring malaria infection. The sustained expansion of effective vector control leads to an increase in the age of malaria positive febrile paediatric admissions. However, despite large reductions, malaria test-positive admissions continued to be concentrated in children aged under five years. Despite high coverage of IRS and LLIN, these vector control measures failed to interrupt transmission in Tororo district. Using simple, cost-effective hospital surveillance, it is possible to monitor the public health impacts of IRS in combination with LLIN.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Thomas A. Smith ◽  
Peter Pemberton-Ross ◽  
Melissa A. Penny ◽  
Nakul Chitnis

Abstract Background Field studies are evaluating if mass drug administration (MDA) might shorten the time to elimination of Plasmodium falciparum malaria, when vector control measures and reactive surveillance strategies are scaled-up. A concern with this strategy is that there may be resurgence of transmission following MDA. Methods A conceptual model was developed to classify possible outcomes of an initial period of MDA, followed by continuously implementing other interventions. The classification considered whether elimination or a new endemic stable state is achieved, and whether changes are rapid, transient, or gradual. These categories were informed by stability analyses of simple models of vector control, case management, and test-and-treat interventions. Individual-based stochastic models of malaria transmission (OpenMalaria) were then used to estimate the probability and likely rates of resurgence in realistic settings. Effects of concurrent interventions, including routine case management and test-and-treat strategies were investigated. Results Analysis of the conceptual models suggest resurgence will occur after MDA unless transmission potential is very low, or the post-MDA prevalence falls below a threshold, which depends on both transmission potential and on the induction of bistability. Importation rates are important only when this threshold is very low. In most OpenMalaria simulations the approximately stable state achieved at the end of the simulations was independent of inclusion of MDA and the final state was unaffected by importation of infections at plausible rates. Elimination occurred only with high effective coverage of case management, low initial prevalence, and high intensity test-and-treat. High coverage of case management but not by test-and-treat induced bistability. Where resurgence occurred, its rate depended mainly on transmission potential (not treatment rates). Conclusions A short burst of high impact MDA is likely to be followed by resurgence. To avert resurgence, concomitant interventions need either to substantially reduce average transmission potential or to be differentially effective in averting or clearing infections at low prevalence. Case management at high effective coverage has this differential effect, and should suffice to avert resurgence caused by imported cases at plausible rates of importation. Once resurgence occurs, its rate depends mainly on transmission potential, not on treatment strategies.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Praveen K. Bharti ◽  
Ravendra K. Sharma ◽  
Sekh Nisar ◽  
Kalyan B. Saha ◽  
...  

Abstract Background The capacity of the field staff to conduct activities related to disease surveillance, case management, and vector control has been one of the key components for successfully achieving malaria elimination. India has committed to eliminate malaria by 2030, and it has placed significance on monitoring and evaluation at the district level as one of the key strategies in its national framework. To support and guide the country’s malaria elimination objectives, the Malaria Elimination Demonstration Project was conducted in the tribal district of Mandla, Madhya Pradesh. Robust monitoring of human resources received special attention to help the national programme formulate a strategy to plug the gaps in its supply chain and monitoring and evaluation systems. Methods A monitoring tool was developed to test the capabilities of field workers to conduct activities related to malaria elimination work. Between November 2018 to February 2021, twenty-five Malaria Field Coordinators (MFCs) of the project utilized this tool everyday during the supervisory visits for their respective Village Malaria Workers (VMWs). The data was analysed and the scores were tested for variations against different blocks, educational status, duration of monitoring, and post-training scores. Results During the study period, the VMWs were monitored a total of 8974 times using the monitoring tool. Each VMW was supervised an average of 1.8 times each month. The critical monitoring indicators scored well in all seven quarters of the study as monitored by the MFCs. Monitoring by MFCs remained stable at 97.3% in all quarters. Contrary to expectations, the study observed longer diagnosis to treatment initiation time in urban areas of the district. Conclusion This study demonstrated the significance of a robust monitoring tool as an instrument to determine the capacity of the field workers in conducting surveillance, case management, and vector control related work for the malaria elimination programme. Similar tools can be replicated not only for malaria elimination, but other public health interventions as well.


2019 ◽  
Author(s):  
André SOMINAHOUIN ◽  
Germain Gil Padonou ◽  
Rodrigue Landéhou ◽  
Albert Sourou Salako ◽  
Hermann Sagbohan ◽  
...  

Abstract Background: Climate variability influence the diversity and abundance of malaria vectors and thereby on malaria transmission dynamics. Examine its effect on Anopheles parameters involved in transmission may predict the potential malaria hotspot as a right target for its control intervention strategies. Here, we investigated the influence of meteorological parameters on the aggressiveness and infectivity of Anopheles in two health districts zones where IRS has been extended in Northern Benin. Methods: Mosquito collections were carried out using human landing catches to evaluate rates of aggression and infectivity in twelve villages. Concomitantly, meteorological data from synoptic stations of Benin and neighbouring countries were collected in 2016-2017. Results: The spatial distribution of infective bites of An. gambiae is characterized by an intense aggression in the rural villages of the study area. Analysis of variances showed significant HBR difference according to the period but not according to the locality. However, the same analysis carried out with the infectivity rate shows no significant difference according to the period and the locality. In addition, the number of infective bites per man per month is higher in August and October, and the climatic parameters that have mainly favoured aggression are wind speed, humidity, sunshine and temperature. Indeed, the peak of wind speed is concentrated around 1.2 km / h and in September (5 km / h) whereas the aggressiveness score of Anopheles in the region is greater than 10 infective bites per man a year. Conclusion Malaria transmission by Anopheles is influenced by climatic factors. The climate observed in the districts where IRS was extended in northern Benin has a real impact on Anopheles density and weakens current and future vector control strategies. This could lead to a series of modifications observed in anopheline populations just after IRS implementation ranging from a tendency to exophagy, from a decrease in the rate of blood-feeding to changes in the time, and change in aggressiveness. These phenomena most likely contribute to the sustainability of malaria transmission despite vector control measures. Keywords: Infectivity, aggression, Climate, Anopheles gambiae ( s.l. ), IRS, Benin.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Edouard Kawawa Swana ◽  
Ghislain Yav Makan ◽  
Clarence Kaut Mukeng ◽  
Henriette Ilunga Mupumba ◽  
Gabriel Mutabusha Kalaba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document