scholarly journals Detecting Plasmodium falciparum in community surveys: a comparison of Paracheck Pf® Test and ICT Malaria Pf® Cassette Test to polymerase chain reaction in Mutasa District, Zimbabwe

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nobert Mudare ◽  
Zvifadzo Matsena-Zingoni ◽  
Aramu Makuwaza ◽  
Edmore Mamini ◽  
Shungu S. Munyati ◽  
...  

Abstract Background Microscopy and rapid diagnostic tests (RDTs) are the main techniques used to diagnose malaria. While microscopy is considered the gold standard, RDTs have established popularity as they allow for rapid diagnosis with minimal technical skills. This study aimed to compare the diagnostic performance of two Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs (Paracheck Pf® Test (Paracheck) and Malaria Pf™ ICT (ICT)) to polymerase chain reaction (PCR) in a community survey. Methods A cross-sectional study was conducted between October 2012 and December 2014 in Mutasa District, Manicaland Province, eastern Zimbabwe. Households were randomly selected using satellite imagery, and 224 households were visited. Residents present in the household on the date of the visit were recruited for the study. Participants of all age groups from the selected households were screened with Paracheck and ICT RDTs in parallel. Dried blood spots (DBS) and thin and thick smears were collected. Parasite DNA extracted from the DBS was subjected to nested PCR targeting the Plasmodium cytochrome b mitochondrial gene. Data analysis was performed using the Cohen’s Kappa test to determine the interrater agreement and the sensitivity and specificity of the diagnostic test were reported. Results Results from a total of 702 participants were analysed. Most were females, 397 (57%), and the median age of participants was 21 years with an interquartile range of 9–39 years. Of those who were screened, 8 (1.1%), 35 (5.0%), and 21 (2.9%) were malaria parasite positive by microscopy, RDT and PCR, respectively. Paracheck and ICT RDTs had a 100% agreement. Comparing RDT and PCR results, 34 participants (4.8%) had discordant results. Most of the discordant cases were RDT positive but PCR negative (n = 24). Half of those RDT positive, but PCR negative individuals reported anti-malarials to use in the past month, which is significantly higher than reported anti-malarial drug use in the population (p < 0.001). The participant was febrile on the day of the visit, but relying on PfHRP2-based RDT would miss this case. Among the diagnostic methods evaluated, with reference to PCR, the sensitivity was higher with the RDT (52.4%) while specificity was higher with the microscopy (99.9%). The positive predictive value (PPV) was higher with the microscopy (87.5%), while the negative predictive values were similar for both microscopy and RDTs (98%). Overall, a strong correlated agreement with PCR was observed for the microscopy (97.9%) and the RDTs (95.2%). Conclusions Paracheck and ICT RDTs showed 100% agreement and can be used interchangeably. As malaria transmission declines and Zimbabwe aims to reach malaria elimination, management of infected individuals with low parasitaemia as well as non-P. falciparum infection can be critical.

Author(s):  
Colleen M. Leonard ◽  
Hussein Mohammed ◽  
Mekonnen Tadesse ◽  
Jessica N. McCaffery ◽  
Doug Nace ◽  
...  

Plasmodium falciparum and Plasmodium vivax are co-endemic in Ethiopia. This study investigated whether mixed infections were missed by microscopy from a 2017 therapeutic efficacy study at two health facilities in Ethiopia. All patients (N = 304) were initially classified as having single-species P. falciparum (n = 148 samples) or P. vivax infections (n = 156). Dried blood spots were tested for Plasmodium antigens by bead-based multiplex assay for pan-Plasmodium aldolase, pan-Plasmodium lactate dehydrogenase, P. vivax lactate dehydrogenase, and histidine-rich protein 2. Of 304 blood samples, 13 (4.3%) contained both P. falciparum and P. vivax antigens and were analyzed by polymerase chain reaction for species-specific DNA. Of these 13 samples, five were confirmed by polymerase chain reaction for P. falciparum/P. vivax co-infection. One sample, initially classified as P. vivax by microscopy, was found to only have Plasmodium ovale DNA. Plasmodium falciparum/P. vivax mixed infections can be missed by microscopy even in the context of a therapeutic efficacy study with multiple trained readers.


Parasitology ◽  
2020 ◽  
Vol 147 (10) ◽  
pp. 1140-1148
Author(s):  
Fernanda do Carmo Magalhães ◽  
Samira Diniz Resende ◽  
Carolina Senra ◽  
Carlos Graeff-Teixeira ◽  
Martin Johannes Enk ◽  
...  

AbstractDue to the efforts to control schistosomiasis transmission in tropical countries, a large proportion of individuals from endemic areas present low parasite loads, which hinders diagnosis of intestinal schistosomiasis by the Kato-Katz (KK) method. Therefore, the development of more sensitive diagnostic methods is essential for efficient control measures. The aim was to evaluate the accuracy of a real-time polymerase chain reaction (RT-PCR) to detect Schistosoma mansoni DNA in fecal samples of individuals with low parasite loads. A cross-sectional population-based study was conducted in a rural community (n = 257) in Brazil. POC-CCA® was performed in urine and feces were used for RT-PCR. In addition, fecal exams were completed by 18 KK slides, saline gradient and Helmintex techniques. The combined results of the three parasitological tests detected schistosome eggs in 118 participants (45.9%) and composed the consolidated reference standard (CRS). By RT-PCR, 117 out of 215 tested samples were positive, showing 91.4% sensitivity, 80.2% specificity and good concordance with the CRS (kappa = 0.71). RT-PCR identified 86.9% of the individuals eliminating less than 12 eggs/g of feces, demonstrating much better performance than POC-CCA® (50.8%). Our results showed that RT-PCR is a valuable alternative for the diagnosis of intestinal schistosomiasis in individuals with very low parasite loads.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Natália Malaguti ◽  
Larissa Danielle Bahls ◽  
Nelson Shozo Uchimura ◽  
Fabrícia Gimenes ◽  
Marcia Edilaine Lopes Consolaro

Bacterial vaginosis (BV) is characterized by a polymicrobial proliferation of anaerobic bacteria and depletion of lactobacilli, which are components of natural vaginal microbiota. Currently, there are limited conventional methods for BV diagnosis, and these methods are time-consuming, expensive, and rarely allow for the detection of more than one agent simultaneously. Therefore, we conceived and validated a multiplex polymerase chain reaction (M-PCR) assay for the simultaneous screening of thirteen bacterial vaginosis-associated agents (BV-AAs) related to symptomatic BV:Gardnerella vaginalis,Mobiluncus curtisii,Mobiluncus mulieris,Bacteroides fragilis,Mycoplasma hominis,Atopobium vaginae,Ureaplasma urealyticum,Megasphaeratype I, Clostridia-like bacteria vaginosis-associated bacteria (BVABs) 1, 2, and 3,Sneathia sanguinegens, andMycoplasma genitalium. The overall validation parameters of M-PCR compared to single PCR (sPCR) were extremely high, including agreement of 99.1% and sensitivity, specificity, and positive predictive values of 100.0%, negative predictive value of 97.0%, accuracy of 99.3%, and agreement with Nugent results of 100.0%. The prevalence of BV-AAs was very high (72.6%), and simultaneous agents were detected in 53.0%, which demonstrates the effectiveness of the M-PCR assay. Therefore, the M-PCR assay has great potential to impact BV diagnostic methods in vaginal samples and diminish associated complications in the near future.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Olusola Ojurongbe ◽  
Olunike Olayeni Adegbosin ◽  
Sunday Samuel Taiwo ◽  
Oyebode Armstrong Terry Alli ◽  
Olugbenga Adekunle Olowe ◽  
...  

This study compares the performance of clinical diagnosis and three laboratory diagnostic methods (thick film microscopy (TFM), rapid diagnostic test (RDT), and polymerase chain reaction (PCR)) for the diagnosis of Plasmodium falciparum in Nigeria. Using clinical criteria, 217 children were recruited into the study out of which 106 (48.8%) were positive by TFM, 84 (38.7%) by RDT, and 125 (57.6%) by PCR. Using a composite reference method generated from the three diagnostic methods, 71 (32.7%) patients were found to be truly infected and 90 (41.5%) truly uninfected, while 56 (25.8%) were misidentified as infected or noninfected. When each of the 3 diagnostic methods was compared with the composite reference, PCR had sensitivity of 97.3%, specificity of 62.5%, positive predictive value (PPV) of 56.8%, and negative predictive value (NPV) of 97.8%; microscopy had sensitivity of 77.2%, specificity of 72%, PPV of 66.9%, and NPV of 81.1%, while RDT had sensitivity of 62.3%, specificity of 87.4%, PPV of 67.7%, and NPV of 84.5%. PCR test performed best among the three methods followed by TFM and RDT in that order. The result of this study shows that clinical diagnosis cannot be relied upon for accurate diagnosis of P. falciparum in endemic areas.


2021 ◽  
pp. 030098582199156
Author(s):  
Alexandra N. Myers ◽  
Unity Jeffery ◽  
Zachary G. Seyler ◽  
Sara D. Lawhon ◽  
Aline Rodrigues Hoffmann

Molecular techniques are increasingly being applied to stained cytology slides for the diagnosis of neoplastic and infectious diseases. Such techniques for the identification of fungi from stained cytology slides have not yet been evaluated. This study aimed to assess the diagnostic accuracy of direct (without nucleic acid isolation) panfungal polymerase chain reaction (PCR) followed by sequencing for identification of fungi and oomycetes on stained cytology slides from dogs, cats, horses, and other species. Thirty-six cases were identified with cytologically identifiable fungi/oomycetes and concurrent identification via fungal culture or immunoassay. Twenty-nine controls were identified with no cytologically or histologically visible organisms and a concurrent negative fungal culture. Direct PCR targeting the internal transcribed spacer region followed by sequencing was performed on one cytology slide from each case and control, and the sensitivity and specificity of the assay were calculated. The sensitivity of the panfungal PCR assay performed on stained cytology slides was 67% overall, 73% excluding cases with oomycetes, and 86% when considering only slides with abundant fungi. The specificity was 62%, which was attributed to amplification of fungal DNA from control slides with no visible fungus and negative culture results. Direct panfungal PCR is capable of providing genus- or species-level identification of fungi from stained cytology slides. Given the potential of panfungal PCR to amplify contaminant fungal DNA, this assay should be performed on slides with visible fungi and interpreted in conjunction with morphologic assessment by a clinical pathologist.


2021 ◽  
Vol 11 (3) ◽  
pp. 373-379
Author(s):  
Huitao Li ◽  
Xueyu Chen ◽  
Xiaomei Qiu ◽  
Weimin Huang ◽  
Chuanzhong Yang

Invasive fungal infection (IFI) is the leading cause of death in neonatal patients, yet the diagnosis of IFI remains a major challenge. At present, most IFI laboratory diagnostic methods are based on classical, but limited, methods such as fungal isolation and culture and histopathological examination. Recently, quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technology have been adopted to quantify nucleic-acid identification. In this study, we established qPCR and ddPCR assays for IFI diagnosis and quantification. qPCR and ddPCR were carried out using identical primers and probe for the amplification of 18S rRNA. Assay results for three fungal strains were positive, whereas ten non-fungal strains had negative results, indicating 100% specificity for both ddPCR and qPCR methods. Genomic DNA of Candida albicans was tested after a serial dilution to compare the sensitivity of the two PCR methods. The limit of detection of ddPCR was 3.2 copies/L, which was a ten-fold increase compared with that of the qPCR method (32 copies/L). Blood samples from 127 patients with high-risk factors and clinical symptoms for IFI were collected from a NICU in Shenzhen, China, and analyzed using qPCR and ddPCR. Thirty-four blood samples from neonates had a proven or probable diagnosis of IFI, and 25 of these were positive by qPCR, whereas 30 were positive by ddPCR. Among the 93 blood samples from neonates who had a possible IFI or no IFI, 24 were positive using qPCR, and 7 were positive using ddPCR. In conclusion, ddPCR is a rapid and accurate pan-fungal detection method and provides a promising prospect for IFI clinical screening.


Author(s):  
Yogita Singh ◽  
Raji Vasanth ◽  
Shrikala Baliga ◽  
Dhanashree B

Objectives: Cultivation and identification of mycobacteria to species level remains difficult and time-consuming. Hence, easy and rapid diagnostic methods are necessary for the differentiation of Mycobacterium tuberculosis (MTB) from non-tuberculous mycobacteria (NTM). The present study aims to detect and differentiate MTB from NTM isolated from clinical samples by immunochromatographic test (ICT) and polymerase chain reaction (PCR). Methods: Over a period of 1 year, clinical samples (n=496) received from suspected cases of TB, at the Department of Microbiology, Kasturba Medical College Hospital, Mangalore were cultured to isolate Mycobacterium spp. Identification of all the isolates was done by conventional biochemical technique, ICT, and PCR. Results: Among the 496 samples processed, 49 (9.87%) were acid-fast bacilli smear positive and 59 (11.89%) samples showed the growth of Mycobacterium spp. Among these, 10 were rapid growers, 49 were slow-growing mycobacteria, out of which 30 were MTB as identified by conventional biochemical reaction. Out of 59 Mycobacterial isolates subjected to ICT for the detection of MPT 64 antigen, only 28 were identified as MTB. However, all the 30 isolates were correctly identified as MTB by PCR. Conclusion: Hence, PCR is essential for rapid differentiation of non-tuberculous Mycobacterium from MTB. False negative results seen with immunochromatographic MPT 64 antigen assay could be due to mutations within the mpt64 gene. Further studies are necessary to characterize these PCR-positive and immunochromatographic assay negative MTB isolates.


Sign in / Sign up

Export Citation Format

Share Document