scholarly journals High fat meals increases postprandial fat oxidation rate but not postprandial lipemia

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Chih-Hui Chiu ◽  
Tsung-Jen Yang ◽  
Che-Hsiu Chen ◽  
Ming-Jing Zeng

Abstract Background This study investigated the effects of ingesting meals with the same calorie intake but distinct nutritional contents after exercise on postprandial lipemia the next day. Methods Eight healthy male participants completed two 2-day trials in a random order. On day 1, the participants underwent five 12 min bouts of cycling exercise with a bout of higher intensity exercise (4 min) after each and then a bout of lower intensity cycling (2 min). The total exercise time was 90 min. After the exercise, the participants ingested three high-fat or low-fat meals. On Day 2, the participants were asked to rest in the laboratory and ingest a high-fat meal. Their postprandial reaction after a high-fat meal was observed. Results Postprandial triglyceride concentrations in the high-fat diet trial and low-fat diet trial exhibited nonsignificant differences. Total TG AUC were no significantly different on HF trial and LF trial (HF: 6.63 ± 3.2; LF: 7.20 ± 3.4 mmol/L*4 h. p = 0.586). However, the postprandial fat oxidation rate total AUC (HF: 0.58 ± 0.1; LF: 0.39 ± 0.2 g/min*4 h. p = 0.045), plasma glucose, and insulin concentration of the high-fat trial were significantly higher than those of the low-fat trial. Conclusions This study revealed that meals with distinct nutritional contents after a 90-min exercise increased the postprandial fat oxidation rate but did not influence the postprandial lipemia after a high-fat meal the next day.

Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 166
Author(s):  
Chih-Hui Chiu ◽  
Che-Hsiu Chen ◽  
Min-Huan Wu ◽  
Yin-Fu Ding

(1) Background: This study investigated the effect of nonexercise activity thermogenesis on postprandial triglyceride (TG) concentrations; (2) Methods: Ten healthy males completed a sedentary trial (ST) and a physical activity trial (PA) in a random order separated by at least 7 days. After each intervention on day 1, the participants consumed a high-fat test meal on the next day. The blood samples and gas sample were observed in the fasted state and for 4 h after consuming the oral fat tolerance test; (3) Results: The postprandial TG concentrations of total (AUC) (p = 0.008) and incremental area under the curve (IAUC) (p = 0.023) in the plasma of participants in the PA trial were significantly lower than those in the plasma of participants in the ST trial. The postprandial fat oxidation rate AUC of the PA trial was significantly higher than that of the ST trial (p = 0.009); (4) Conclusions: The results of this study indicated that nonexercise energy expenditure decrease the postprandial TG concentration and increase the fat oxidation the next day.


1997 ◽  
Vol 136 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Susanna Iossa ◽  
Maria Pina Mollica ◽  
Lillà Lionetti ◽  
Antonio Barletta ◽  
Giovanna Liverini

Abstract We have carried out measurements of energy balance in hypothyroid rats fed a low-fat or a high-fat diet for eighteen days. We have also measured cephalic and processing thermic effect of food (TEF) after a low-fat or a high-fat meal. Body lipid gain, carcass lipid content and gross efficiency were significantly (P < 0·05) higher in hypothyroid rats fed a high-fat diet compared with hypothyroid rats fed a low-fat diet, while metabolizable energy intake and energy expenditure remained unchanged. Cephalic TEF after a low-fat meal was significantly (P < 005) lower in hypothyroid rats fed a high-fat diet compared with hypothyroid rats fed a low-fat diet, while it was significantly (P <0·05) higher after a high-fat meal than after a low-fat meal in hypothyroid rats fed a high-fat diet. No significant variation was found in processing TEF after a low-fat or a high-fat meal. Our results indicate that hypothyroid rats are unable to develop increased energy expenditure and increased TEF in response to a high-fat diet. European Journal of Endocrinology 136 309–315


2015 ◽  
Vol 8 ◽  
pp. NMI.S32106 ◽  
Author(s):  
Jessie R. Wilburn ◽  
Jeffrey Bourquin ◽  
Andrea Wysong ◽  
Christopher L. Melby

Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years) participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1) EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2) (~600 kcal) and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2) EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3) CON: no exercise control. Results The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL x 360 minutes) and EX-DEF (499.4 ± 73.5 mg/dL x 360 minutes), respectively, compared to CON (660.2 ± 95.0 mg/dL x 360 minutes) ( P < 0.05). Conclusions A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2626 ◽  
Author(s):  
Corrie M. Whisner ◽  
Siddhartha S. Angadi ◽  
Nathan Y. Weltman ◽  
Arthur Weltman ◽  
Jessica Rodriguez ◽  
...  

The consumption of fiber-rich foods may negate the deleterious effects of high-fat meals on postprandial triglyceridemia and endothelial function. Despite supportive data in adults, little is known about the effects of high-fat and high-fiber foods on cardiovascular health parameters in pediatric populations. In this crossover trial, male and female adolescents (n = 10; 14.1 + 2.6 years; range 10–17 years) consumed (1) low-fat, low-fiber, (2) low-fat, high-fiber, (3) high-fat, low-fiber, and (4) high-fat, high-fiber breakfast meals in randomized order, each following an overnight fast. Baseline and 4 h post-meal blood was obtained for determination of glucose, insulin and triglyceride concentrations. Endothelial function was assessed via brachial artery flow-mediated dilation (FMD). Postprandial FMD was not significantly changed after any meal. However, regression analyses revealed a significant inverse relationship between the change in 4 h triglyceride concentration and change in 4 h FMD for the high-fat, low-fiber meal (β = −0.087; 95% CI = −0.138 to −0.037; p = 0.001) that was no longer significant in the high-fat, high-fiber meal (β = −0.044; 95% CI = −0.117 to 0.029; p = 0.227). Interpretation of these analyses must be qualified by acknowledging that between-meal comparison revealed that the two regression lines were not statistically different (p = 0.226). Addition of high-fiber cereal to the high-fat meal also reduced 4 h postprandial triglyceride increases by ~50% (p = 0.056). A high-fiber breakfast cereal did not attenuate postprandial glucose and insulin responses after consumption of a low-fat meal. While further work is needed to confirm these results in larger cohorts, our findings indicate the potential importance of cereal fiber in blunting the inverse relationship between postprandial hypertriglyceridemia and FMD after consumption of a high-fat meal in adolescents.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 180 ◽  
Author(s):  
Christina Sciarrillo ◽  
Nicholas Koemel ◽  
Stephanie Kurti ◽  
Sam Emerson

Background: A large post-meal triglyceride (TG) response is an independent risk factor for cardiovascular disease, but postprandial lipemia assessments are not clinically practical in their current form. Therefore, we assessed the validity of an abbreviated, clinically feasible protocol in measuring postprandial lipemia. Method: Eighteen healthy adults (8 male and 10 female) completed 3 high-fat meal trials in random order: (1) a Standard in Lab (SL) protocol wherein blood draws (to determine TG) were made from a catheter at baseline and hourly for 6 h; (2) an Abbreviated in Lab (AL) protocol in which participants remained in the laboratory but blood draws were only made at baseline and 4 h post-meal; and (3) an Abbreviated with Freedom (AF) protocol in which participants vacated the laboratory between the meal and the 4-h blood draw. Results: TG increase from baseline was very similar (p = 0.93) across the 3 trials (SL: 68.5 ± 62.7 mg/dL; AL: 71.1 ± 58.0 mg/dL; AF: 66.7 ± 46.4 mg/dL), as were 4-h TG levels (SL: 144.6 ± 84.2 mg/dL; AL: 171.4 ± 88.2 mg/dL; AF: 157.7 ± 76.7 mg/dL; p = 0.49). Similarly, total and incremental area under the curve (AUC) were not significantly different across the trials (p = 0.12 and 0.91, respectively). Conclusion: The TG results of the clinically feasible, abbreviated protocol were similar to those of the more exhaustive standard protocol. The AF protocol could be a valid and feasible clinical tool for measurement of postprandial lipemia and assessment of cardiovascular risk, although studies in larger and more diverse cohorts are needed.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 723-P
Author(s):  
LINGWANG AN ◽  
DANDAN WANG ◽  
XIAORONG SHI ◽  
CHENHUI LIU ◽  
KUEICHUN YEH ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Neesha S. Patel ◽  
Ujwal R. Yanala ◽  
Shruthishree Aravind ◽  
Roger D. Reidelberger ◽  
Jon S. Thompson ◽  
...  

AbstractIn patients with short bowel syndrome, an elevated pre-resection Body Mass Index may be protective of post-resection body composition. We hypothesized that rats with diet-induced obesity would lose less lean body mass after undergoing massive small bowel resection compared to non-obese rats. Rats (CD IGS; age = 2 mo; N = 80) were randomly assigned to either a high-fat (obese rats) or a low-fat diet (non-obese rats), and fed ad lib for six months. Each diet group then was randomized to either underwent a 75% distal small bowel resection (massive resection) or small bowel transection with re-anastomosis (sham resection). All rats then were fed ad lib with an intermediate-fat diet (25% of total calories) for two months. Body weight and quantitative magnetic resonance-determined body composition were monitored. Preoperative body weight was 884 ± 95 versus 741 ± 75 g, and preoperative percent body fat was 35.8 ± 3.9 versus 24.9 ± 4.6%; high-fat vs. low fat diet, respectively (p < 0.0001); preoperative diet type had no effect on lean mass. Regarding total body weight, massive resection produced an 18% versus 5% decrease in high-fat versus low-fat rats respectively, while sham resection produced a 2% decrease vs. a 7% increase, respectively (p < 0.0001, preoperative vs. necropsy data). Sham resection had no effect on lean mass; after massive resection, both high-fat and low-fat rats lost lean mass, but these changes were not different between the latter two rat groups. The high-fat diet and low-fat diet induced obesity and marginal obesity, respectively. The massive resection produced greater weight loss in high-fat rats compared to low-fat rats. The type of dietary preconditioning had no effect on lean mass loss after massive resection. A protective effect of pre-existing obesity on lean mass after massive intestinal resection was not demonstrated.


Author(s):  
Simon Fryer ◽  
Keeron Stone ◽  
Craig Paterson ◽  
Meghan Brown ◽  
James Faulkner ◽  
...  

AbstractIndependently, prolonged uninterrupted sitting and the consumption of a meal high in saturated fats acutely disrupt normal cardiovascular function. Currently, the acute effects of these behaviors performed in combination on arterial stiffness, a marker of cardiovascular health, are unknown. This study sought to determine the effect of consuming a high-fat meal (Δ = 51 g fat) in conjunction with prolonged uninterrupted sitting (180 min) on measures of central and peripheral arterial stiffness. Using a randomized crossover design, 13 young healthy males consumed a high-fat (61 g) or low-fat (10 g) meal before 180 min of uninterrupted sitting. Carotid-femoral (cf) and femoral-ankle (fa) pulse wave velocity (PWV), aortic-femoral stiffness gradient (af-SG), superficial femoral PWV beta (β), and oscillometric pulse wave analysis outcomes were assessed pre and post sitting. cfPWV increased significantly more following the high-fat (mean difference [MD] = 0.59 m·s−1) meal than following the low-fat (MD = 0.2 m·s−1) meal, with no change in faPWV in either condition. The af-SG significantly decreased (worsened) (ηp2 = 0.569) over time in the high- and low-fat conditions (ratio = 0.1 and 0.1, respectively). Superficial femoral PWVβ significantly increased over time in the high- and low-fat conditions (ηp2 = 0.321; 0.8 and 0.4 m·s−1, respectively). Triglycerides increased over time in the high-fat trial only (ηp2 = 0.761). There were no significant changes in blood pressure. Consuming a high-fat meal prior to 180 min of uninterrupted sitting augments markers of cardiovascular disease risk more than consuming a low-fat meal prior to sitting.


Sign in / Sign up

Export Citation Format

Share Document