scholarly journals Unsymmetrical cyanine dye via in vivo hitchhiking endogenous albumin affords high-performance NIR-II/photoacoustic imaging and photothermal therapy

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pengfei Xu ◽  
Linan Hu ◽  
Cheng Yu ◽  
Weidong Yang ◽  
Fei Kang ◽  
...  

AbstractHerein, an unprecedented synergistic strategy for the development of high-performance NIR-II fluorophore is proposed and validated. Based on an unsymmetrical cyanine dye design strategy, the NIR-II emissive dye NIC was successfully developed by replacing only one of the indoline donors of symmetrical cyanine dye ICG with a fully conjugated benz[c,d]indole donor. This minor structural change maximally maintains the high extinction coefficient advantage of cyanine dyes. NIC-ER with endogenous albumin-hitchhiking capability was constructed to further enhance its in vivo fluorescence brightness. In the presence of HSA (Human serum albumin), NIC-ER spontaneously resides in the albumin pocket, and a brilliant ~89-fold increase in fluorescence was observed. Due to its high molar absorptivity and moderate quantum yield, NIC-ER in HSA exhibits bright NIR-II emission with high photostability and significant Stokes shift (>110 nm). Moreover, NIC-ER was successfully employed for tumor-targeted NIR-II/PA imaging and efficient photothermal tumor elimination. Overall, our strategy may open up a new avenue for designing and constructing high-performance NIR-II fluorophores.

2020 ◽  
Author(s):  
Nan Song ◽  
Zhijun Zhang ◽  
Peiying Liu ◽  
Dihua Dai ◽  
Chao Chen ◽  
...  

Supramolecular approaches have opened up vast possibilities in the construction of versatile functional materials, especially those with stimuli-responsiveness and integrated functionalities of multi-modal diagnosis and synergistic therapeutics. In this study, a hybrid theranostic nanosystem named TTPY-PyÌCP5@AuNR is constructed via facile host-guest interactions, where TTPY-Py is a photosensitizer with aggregation-induced emission and CP5@AuNR represents the carboxylatopillar[5]arene (CP5)-modified Au nanorods. TTPY-PyÌCP5@AuNR integrates the respective advantages of TTPY-Py and CP5@AuNR such as the high performance of reactive oxygen species (ROS) generation and photothermal conversion, and meanwhile shows fluorescence responses to both temperature and pH stimuli due to the non-covalent interactions. The successful modification of CP5 macrocycles on AuNRs surfaces can eliminate the cytotoxicity of AuNRs and enable them to serve as the nanocarrier of TTPY-Py for further theranostic application. Significantly, both in vitro and in vivo evaluations demonstrate that this supramolecular nanotheranostic system possesses multiple phototheranostic modalities including intensive fluorescence imaging (FLI), photoacoustic imaging (PAI), efficient photodynamic therapy (PDT), and photothermal therapy (PTT), indicating its great potentials for FLI-PAI imaging-guided synergistic PDT-PTT therapy. Besides, TTPY-Py can be released from the nanocarriers upon activating by the acidic environment of lysosomes and then specifically light up mitochondria. This study brings up a new strategy into the design of versatile nanotheranostics for accurate tumor imaging and cancer therapies.


2020 ◽  
Author(s):  
Nan Song ◽  
Zhijun Zhang ◽  
Peiying Liu ◽  
Dihua Dai ◽  
Chao Chen ◽  
...  

Supramolecular approaches have opened up vast possibilities in the construction of versatile functional materials, especially those with stimuli-responsiveness and integrated functionalities of multi-modal diagnosis and synergistic therapeutics. In this study, a hybrid theranostic nanosystem named TTPY-PyÌCP5@AuNR is constructed via facile host-guest interactions, where TTPY-Py is a photosensitizer with aggregation-induced emission and CP5@AuNR represents the carboxylatopillar[5]arene (CP5)-modified Au nanorods. TTPY-PyÌCP5@AuNR integrates the respective advantages of TTPY-Py and CP5@AuNR such as the high performance of reactive oxygen species (ROS) generation and photothermal conversion, and meanwhile shows fluorescence responses to both temperature and pH stimuli due to the non-covalent interactions. The successful modification of CP5 macrocycles on AuNRs surfaces can eliminate the cytotoxicity of AuNRs and enable them to serve as the nanocarrier of TTPY-Py for further theranostic application. Significantly, both in vitro and in vivo evaluations demonstrate that this supramolecular nanotheranostic system possesses multiple phototheranostic modalities including intensive fluorescence imaging (FLI), photoacoustic imaging (PAI), efficient photodynamic therapy (PDT), and photothermal therapy (PTT), indicating its great potentials for FLI-PAI imaging-guided synergistic PDT-PTT therapy. Besides, TTPY-Py can be released from the nanocarriers upon activating by the acidic environment of lysosomes and then specifically light up mitochondria. This study brings up a new strategy into the design of versatile nanotheranostics for accurate tumor imaging and cancer therapies.


2015 ◽  
Vol 51 (70) ◽  
pp. 13488-13491 ◽  
Author(s):  
Hong-Wei An ◽  
Sheng-Lin Qiao ◽  
Chun-Yuan Hou ◽  
Yao-Xin Lin ◽  
Li-Li Li ◽  
...  

We report a supramolecular approach for preparation of photostable NIR nanovesicles based on a cyanine dye derivative as a photoacoustic (PA) contrast agent for high-performance nano-imaging.


2014 ◽  
Vol 26 (48) ◽  
pp. 8210-8216 ◽  
Author(s):  
Mei Chen ◽  
Shaoheng Tang ◽  
Zhide Guo ◽  
Xiaoyong Wang ◽  
Shiguang Mo ◽  
...  

1991 ◽  
Vol 260 (1) ◽  
pp. R208-R216 ◽  
Author(s):  
P. J. Chiu ◽  
G. Tetzloff ◽  
M. T. Romano ◽  
C. J. Foster ◽  
E. J. Sybertz

The role of C-atrial natriuretic factor (ANF) receptors and neutral endopeptidase (NEP) in the pharmacokinetics and hydrolysis of 125I-labeled ANF was evaluated in rats by using C-ANF and SCH 39370 to block the nonenzymatic and enzymatic pathways, respectively. After a bolus injection of 125I-ANF, the resulting area under the plasma concentration curve (AUC) with C-ANF treatment was seven times the control value with regard to trichloroacetic acid-precipitable (TCA-ppt) radioactivity (intact ANF). SCH 39370 tended to increase AUC, but the changes were not significant. Nevertheless, SCH 39370 suppressed the appearance of TCA-soluble radioactivity (hydrolytic products), indicating that in vivo inhibition of ANF degradation had occurred. SCH 39370 plus C-ANF produced a 15-fold increase in AUC for TCA-ppt radioactivity and a reduction in plasma TCA-soluble radioactivity. High-performance liquid chromatography (HPLC) analysis confirmed that combination treatment increased intact ANF and reduced hydrolytic products in the plasma. SCH 39370 reduced clearance (C) without altering volume of distribution in steady state (Vss) and half-life (t1/2). C-ANF decreased both C and Vss leading to a fourfold increase in t1/2, which was further prolonged by SCH 39370 (7.5 times control). Bilateral nephrectomy caused a proportionally similar decrease in Vss and C without changing t1/2, suggesting significant extrarenal metabolism of ANF. SCH 39370 systemically inhibits ANF hydrolysis; the resulting increase in ANF, however, is masked by the great capacity of ANF clearance receptors but can be revealed with excess C-ANF, suggesting that the plasma ANF concentrations are determined by the interplay of the C-ANF receptor and NEP systems.


Nanoscale ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 10216-10225 ◽  
Author(s):  
Hongjun Zhuang ◽  
Benhao Li ◽  
Mengyao Zhao ◽  
Peng Wei ◽  
Wei Yuan ◽  
...  

Cyanine dye-coordinated upconversion nanoparticles were developed for real-time monitoring drug-induced hepatotoxicity in vivo by ratio-fluorescence and photoacoustic imaging of peroxynitrite.


Nanoscale ◽  
2019 ◽  
Vol 11 (27) ◽  
pp. 12742-12754 ◽  
Author(s):  
Jianmin Nie ◽  
Yang Li ◽  
Gang Han ◽  
Jianrong Qiu

Inorganic nanophotonic materials (INPMs) are considered to be promising diagnosis and therapeutic agents for in vivo applications, such as bio-imaging, photoacoustic imaging and photothermal therapy.


2020 ◽  
Vol 209 ◽  
pp. 111121 ◽  
Author(s):  
Yahong Han ◽  
Botao Qu ◽  
Juan Li ◽  
Xiaomin Zhang ◽  
Xiaoyang Peng ◽  
...  

2021 ◽  
Vol 41 (12) ◽  
pp. 125011
Author(s):  
Duc Tri Phan ◽  
Thi Tuong Vy Phan ◽  
Ngoc Thang Bui ◽  
Sumin Park ◽  
Jaeyeop Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document