scholarly journals Cargo proteins in extracellular vesicles: potential for novel therapeutics in non-alcoholic steatohepatitis

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jimin Kim ◽  
Seul Ki Lee ◽  
Seon-Yeong Jeong ◽  
Hye Jin Cho ◽  
Joonghoon Park ◽  
...  

Abstract Background Extracellular vesicles (EVs) are recognized as novel cell-free therapeutics. Non-alcoholic steatohepatitis (NASH) remains a critical health problem. Herein, we show that EVs from pan peroxisome proliferator-activated receptor agonist-primed induced mesenchymal stem cell (pan PPAR-iMSC-EVs) has unique cargo protein signatures, and demonstrate its therapeutic function in NASH. Results A unique protein signatures were identified in pan PPAR-iMSC-EVs against those from non-stimulated iMSC-EVs. NASH mice receiving pan PPAR-iMSC-EVs showed reduced steatotic changes and ameliorated ER stress and mitochondiral oxidative stress induced by inflammation. Moreover, pan PPAR-iMSC-EVs promoted liver regeneration via inhibiting apoptosis and enhancing proliferation. Conclusions We conclude that our strategy for enriching unique cargo proteins in EVs may facilitate the development of novel therapeutic option for NASH. Graphical Abstract

2019 ◽  
Vol 133 (3) ◽  
pp. 531-544 ◽  
Author(s):  
Tzu-Hao Li ◽  
Ying-Ying Yang ◽  
Chia-Chang Huang ◽  
Chih-Wei Liu ◽  
Hung-Cheng Tsai ◽  
...  

Abstract Background: Reversal of alcohol-induced peroxisome proliferator-activated receptor (PPAR) α (PPARα) and PPARδ dysfunction has been reported to decrease the severity of alcoholic steatohepatitis (ASH). Autophagy is essential for cell survival and tissue energy homeostasis. Emerging evidence indicates that alcohol-induced adipose tissue (AT) autophagy dysfunction contributes to injury in the intestine, liver, and AT of ASH. Methods: The effects and mechanisms of dual PPARα/δ agonist elafibranor on autophagy stimulation were investigated using mice with ASH. Results: C57BL/6 mice on ethanol diet showed AT dysfunction, disrupted intestinal barrier, and ASH, which was accompanied by alcohol-mediated decrease in PPARα, PPARδ, and autophagy levels in intestine, liver, and AT. Chronic treatment with elafibranor attenuated AT apoptosis and inflammation by restoration of tissue PPARα, PPARδ, and autophagy levels. In ASH mice, alcohol-induced AT dysfunction along with increased fatty acid (FA) uptake and decreased free FA (FFA) release from AT was inhibited by elafibranor. The improvement of AT autophagy dysfunction by elafibranor alleviated inflammation and apoptosis-mediated intestinal epithelial disruption in ASH mice. Acute elafibranor incubation inhibited ethanol-induced ASH-mice-sera-enhanced autophagy dysfunction, apoptosis, barrier disruption, and intracellular steatosis in Caco-2 cells and primary hepatocytes (PHs). Conclusion: Altogether, these findings demonstrated that the PPARα/δ agonist, elafibranor, decreased the severity of liver injury by restoration of alcohol-suppressed AT autophagy function and by decreasing the release of apoptotic markers, inflammatory cytokines, and FFA, thereby reducing intestinal epithelium disruption and liver inflammation/apoptosis/steatosis in ASH mice. These data suggest that dual PPAR agonists can serve as potential therapeutic agents for the management of ASH.


2009 ◽  
Vol 118 (6) ◽  
pp. 401-410 ◽  
Author(s):  
Anne-Christine Piguet ◽  
Deborah Stroka ◽  
Arthur Zimmermann ◽  
Jean-François Dufour

The metabolic disorders that predispose patients to NASH (non-alcoholic steatohepatitis) include insulin resistance and obesity. Repeated hypoxic events, such as occur in obstructive sleep apnoea syndrome, have been designated as a risk factor in the progression of liver disease in such patients, but the mechanism is unclear, in particular the role of hypoxia. Therefore we studied the influence of hypoxia on the development and progression of steatohepatitis in an experimental mouse model. Mice with a hepatocellular-specific deficiency in the Pten (phosphatase and tensin homologue deleted on chromosome 10) gene, a tumour suppressor, were exposed to a 10% O2 (hypoxic) or 21% O2 (control) atmosphere for 7 days. Haematocrit, AST (aspartate aminotransferase), glucose, triacylglycerols (triglycerides) and insulin tolerance were measured in blood. Histological lesions were quantified. Expression of genes involved in lipogenesis and mitochondrial β-oxidation, as well as FOXO1 (forkhead box O1), hepcidin and CYP2E1 (cytochrome P450 2E1), were analysed by quantitative PCR. In the animals exposed to hypoxia, the haematocrit increased (60±3% compared with 50±2% in controls; P<0.01) and the ratio of liver weight/body weight increased (5.4±0.2% compared with 4.7±0.3% in the controls; P<0.01). Furthermore, in animals exposed to hypoxia, steatosis was more pronounced (P<0.01), and the NAS [NAFLD (non-alcoholic fatty liver disease) activity score] (8.3±2.4 compared with 2.3±10.7 in controls; P<0.01), serum AST, triacylglycerols and glucose were higher. Insulin sensitivity decreased in mice exposed to hypoxia relative to controls. The expression of the lipogenic genes SREBP-1c (sterol-regulatory-element-binding protein-1c), PPAR-γ (peroxisome-proliferator-activated receptor-γ), ACC1 (acetyl-CoA carboxylase 1) and ACC2 (acetyl-CoA carboxylase 2) increased significantly in mice exposed to hypoxia, whereas mitochondria β-oxidation genes [PPAR-α (peroxisome-proliferator-activated receptor-α) and CPT-1 (carnitine palmitoyltransferase-1)] decreased significantly. In conclusion, the findings of the present study demonstrate that hypoxia alone aggravates and accelerates the progression of NASH by up-regulating the expression of lipogenic genes, by down-regulating genes involved in lipid metabolism and by decreasing insulin sensitivity.


2014 ◽  
Vol 94 (3) ◽  
pp. 795-858 ◽  
Author(s):  
Jaap G. Neels ◽  
Paul A. Grimaldi

The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Sakshi Sikka ◽  
Luxi Chen ◽  
Gautam Sethi ◽  
Alan Prem Kumar

The peroxisome proliferator-activated receptor-gamma (PPARγ) is a member of the hormone-activated nuclear receptor superfamily. PPARγcan be activated by a diverse group of agents, such as endogenous polyunsaturated fatty acids, 15-deoxy-Δ12,14-prostaglandin J2(15d-PGJ2), and thiazolidinedione (TZD) drugs. PPARγinduces antiproliferative, antiangiogenic, and prodifferentiation pathways in several tissue types, thus making it a highly useful target for downregulation of carcinogenesis. These TZD-derived novel therapeutic agents, alone or in combination with other anticancer drugs, have translational relevance in fostering effective strategies for cancer treatment. TZDs have been proven for antitumor activity in a wide variety of experimental cancer models, bothin vitroandin vivo, by affecting the cell cycle, inducing cell differentiation and apoptosis, as well as by inhibiting tumor angiogenesis. Angiogenesis inhibition mechanisms of TZDs include direct inhibition of endothelial cell proliferation and migration, as well as reduction in tumor cell vascular endothelial growth factor production. In prostate cancer, PPARγligands such as troglitazone and 15d-PGJ2have also shown to inhibit tumor growth. This paper will focus on current discoveries in PPARγactivation, targeting prostate carcinogenesis as well as the role of PPARγas a possible anticancer therapeutic option. Here, we review PPARγas an antitumor agent and summarize the antineoplastic effects of PPARγagonists in prostate cancer.


2021 ◽  
Vol 12 ◽  
pp. 204201882110343
Author(s):  
Luc F. Van Gaal ◽  
Jonathan Mertens ◽  
Sven Francque ◽  
Christophe De Block

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have been reported as a novel worldwide epidemic, very often associated with obesity, metabolic syndrome, and type 2 diabetes. Both conditions have also been shown to be associated with a number of endocrine pathologies. Despite the epidemic, the complex pathophysiology and major complications, ranging from metabolic disturbances (diabetes and more) to cardiovascular disease, people with NASH are left with very few management options. The best and most approved therapeutic option is lifestyle intervention. Although pharmacotherapies based on pathophysiological background are in development, response rates appear modest, mainly for fibrosis treatment, which is the reason for lack of approved drug therapy. Previous drugs analyzed, such as pioglitazone and vitamin E, show weak efficacy. From different phase II trials, antidiabetic (injectable) drugs seem to be promising, both in mono- or bitherapy. Also, derivatives of peroxisome proliferator-activated receptors may have an interesting future, as well. For that reason, more focus should be given on prevention of this novel disease entity. In view of this booming epidemic, with a background of obesity and type 2 diabetes, and the important medical consequences, early recognition, prevention and intervention of NAFLD/NASH seems appropriate. In this review, we will focus on the different current and future therapeutic intervention options, taking into consideration the complex pathophysiology of this disease.


PPAR Research ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Teresa Coll ◽  
Emma Barroso ◽  
David Álvarez-Guardia ◽  
Lucía Serrano ◽  
Laia Salvadó ◽  
...  

The pathophysiology underlying several metabolic diseases, such as obesity, type 2 diabetes mellitus, and atherosclerosis, involves a state of chronic low-level inflammation. Evidence is now emerging that the nuclear receptor Peroxisome Proliferator-Activated Receptor (PPAR)β/δameliorates these pathologies partly through its anti-inflammatory effects. PPARβ/δactivation prevents the production of inflammatory cytokines by adipocytes, and it is involved in the acquisition of the anti-inflammatory phenotype of macrophages infiltrated in adipose tissue. Furthermore, PPARβ/δligands prevent fatty acid-induced inflammation in skeletal muscle cells, avoid the development of cardiac hypertrophy, and suppress macrophage-derived inflammation in atherosclerosis. These data are promising and suggest that PPARβ/δligands may become a therapeutic option for preventing the inflammatory basis of metabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document