scholarly journals Agitation-dependent biomechanical forces modulate GPVI receptor expression and platelet adhesion capacity during storage

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Ehteramolsadat Hosseini ◽  
Amin Solouki ◽  
Masood Haghshenas ◽  
Mehran Ghasemzadeh ◽  
Simone M. Schoenwaelder

Abstract Background Continuous agitation during storage slows down the platelet storage lesions. However, in special circumstances, manual-mixing can be alternatively used to store products for short time periods without compromising platelet quality. Based on this finding, and given the role of shear stress in modulating receptor expression, we were interested in comparing the levels of platelet adhesion receptor, GPVI and platelet adhesion capacity under each storage condition. Methods Platelet concentrates (PCs) were divided into three groups: continuously-agitated PCs (CAG-PCs) with or without PP2 (Src kinase inhibitor) and manually-mixed PCs (MM-PCs). Platelet count/MPV, swirling, GPVI and P-selectin expression, GPVI shedding, platelet adhesion/spreading to collagen were examined during 5 days of storage. Results While MM- and CAG-PCs showed similar levels of P-selectin expression, GPVI expression was significantly elevated in MM-PCs with lower GPVI shedding/expression ratios, enhanced platelet adhesion/spreading and swirling in manually-mixed PCs. Of note, CAG-PCs treated with PP2 also demonstrated lower P-selectin expression and GPVI shedding, higher GPVI expression and attenuated swirling and spreading capability. Conclusion Given the comparable platelet activation state in MM and CAG-PCs as indicated by P-selectin expression, enhanced platelet adhesion/spreading in MM-PCs, along with relatively higher GPVI expression here, supports previous studies demonstrating a role for biomechanical forces in modulating GPVI-dependent function. Thus, lower GPVI expression in CAG-PCs may be due to shear forces induced by agitation, which keeps this receptor down-regulated while also attenuating platelet adhesion/spreading capacities during storage. Low platelet function in PP2-CAG-PCs also highlights the importance of Src-kinases threshold activity in maintaining platelets quality.

Blood ◽  
1975 ◽  
Vol 46 (2) ◽  
pp. 209-218 ◽  
Author(s):  
S Murphy ◽  
FH Gardner

Abstract Containers constructed of polyvinylchloride (PVC) are used for the storage of platelet concentrates (PC) for transfusion, At 22 degrees C, pH often falls to such low levels (pH is less that 6.0) that viability is lost. Far lesser degrees of pH fall are observed in bags constructed of polyethylene (PE). In this study, pH, PO2, PCO2, platelet count, lactate concentration, microscopic morphology, and viability after 51- chromium labeling were evaluated during storage at 22 degrees C under a variety of circumstances. The results indicate that (1) pH falls because of the generation of lactic acid by platelet glycolysis and, under some circumstances, the retention of CO2. (2) Rate of pH fall is, therefore, roughly proportional to the platelet count. (3) PE is more permeable to gases, thereby allowing CO2 escape from and easier O2 entry into the stored PC; the higher O2 tensions suppress glycolysis by the Pasteur effect. (4) Adequate agitation and container size are critical if the beneficial effect of PE is to be obtained. (5) In general, platelets stored in PE containers have excellent viability in vivo although CO2 escape can result in elevations in pH which are deleterious. (6) Storage in a 10% CO2 atmosphere prevents these deletrrious pH elevations without otherwise impairing platelet viability; (7) Results similar to those achieved with PE can be achieved with PVC if this material is made thinner to allow easier penetration of gases.


1998 ◽  
Vol 46 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Marcia L. Taylor* ◽  
Marcus K. Ilton ◽  
Neil L. A. Misso ◽  
D. Neil Watkins ◽  
Joseph Hung ◽  
...  

Blood ◽  
1975 ◽  
Vol 46 (2) ◽  
pp. 209-218 ◽  
Author(s):  
S Murphy ◽  
FH Gardner

Containers constructed of polyvinylchloride (PVC) are used for the storage of platelet concentrates (PC) for transfusion, At 22 degrees C, pH often falls to such low levels (pH is less that 6.0) that viability is lost. Far lesser degrees of pH fall are observed in bags constructed of polyethylene (PE). In this study, pH, PO2, PCO2, platelet count, lactate concentration, microscopic morphology, and viability after 51- chromium labeling were evaluated during storage at 22 degrees C under a variety of circumstances. The results indicate that (1) pH falls because of the generation of lactic acid by platelet glycolysis and, under some circumstances, the retention of CO2. (2) Rate of pH fall is, therefore, roughly proportional to the platelet count. (3) PE is more permeable to gases, thereby allowing CO2 escape from and easier O2 entry into the stored PC; the higher O2 tensions suppress glycolysis by the Pasteur effect. (4) Adequate agitation and container size are critical if the beneficial effect of PE is to be obtained. (5) In general, platelets stored in PE containers have excellent viability in vivo although CO2 escape can result in elevations in pH which are deleterious. (6) Storage in a 10% CO2 atmosphere prevents these deletrrious pH elevations without otherwise impairing platelet viability; (7) Results similar to those achieved with PE can be achieved with PVC if this material is made thinner to allow easier penetration of gases.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


2010 ◽  
Vol 30 (03) ◽  
pp. 150-155 ◽  
Author(s):  
J. W. Wang ◽  
J. Eikenboom

SummaryVon Willebrand factor (VWF) is a pivotal haemostatic protein mediating platelet adhesion to injured endothelium and carrying coagulation factor VIII (FVIII) in the circulation to protect it from premature clearance. Apart from the roles in haemostasis, VWF drives the formation of the endothelial cell specific Weibel-Palade bodies (WPBs), which serve as a regulated storage of VWF and other thrombotic and inflammatory factors. Defects in VWF could lead to the bleeding disorder von Willebrand disease (VWD).Extensive studies have shown that several mutations identified in VWD patients cause an intracellular retention of VWF. However, the effects of such mutations on the formation and function of its storage organelle are largely unknown. This review gives an overview on the role of VWF in WPB biogenesis and summarizes the limited data on the WPBs formed by VWD-causing mutant VWF.


1991 ◽  
Vol 65 (05) ◽  
pp. 608-617 ◽  
Author(s):  
Joseph A Chinn ◽  
Thomas A Horbett ◽  
Buddy D Ratner

SummaryThe role of fibrinogen in mediating platelet adhesion to polymers exposed to blood plasma was studied by comparison of the effect of plasma dilution on fibrinogen adsorption and platelet adhesion, and by the use of coagulation factor deficient plasmas. Polyetherurethane substrates were first preadsorbed with dilute plasma, then contacted with washed platelets suspended in a modified, apyrase containing Tyrode’s buffer. Platelet adhesion was studied under static conditions in Multiwell dishes, and also under shearing conditions using a parallel plate perfusion chamber. Fibrinogen adsorption and platelet adhesion were measured using 125I radiolabeled baboon fibrinogen and min radiolabeled baboon platelets, respectively. Surfaces were characterized by electron spectroscopy for chemical analysis (ESCA).When fibrinogen adsorption to Biomer was measured after 2 h contact with a series of dilute plasma solutions under static conditions, a peak in adsorption was observed from 0.26% plasma, i.e., adsorption was greater from 0.26% plasma than from either more or less dilute plasma. A peak in subsequent platelet adhesion to the plasma preadsorbed surfaces, measured after 2 h static incubation with washed platelets, was also observed but occurred on Biomer preadsorbed with 1.0% plasma.When fibrinogen adsorption was measured after 5 min contact under shearing conditions, the fibrinogen adsorption peak occurred on surfaces that had been exposed to 1.0% plasma. A peak in platelet adhesion to these preadsorbed surfaces, measured after 5 min contact with the platelet suspensions under shearing conditions, was observed on Biomer preadsorbed with 0.1% plasma. Shifts between the positions of the peaks in protein adsorption and platelet adhesion occurred on other polymers tested as well.Platelet adhesion was almost completely inhibited when baboon and human plasmas lacking fibrinogen (i. e., serum, heat defibrinogenated plasma, and congenitally afibrinogénémie plasma) were used. Platelet adhesion was restored to near normal when exogenous fibrinogen was added to fibrinogen deficient plasmas. Adhesion was also inhibited completely when a monoclonal antibody directed against the glycoprotein IIb/IIIa complex was added to the platelet suspension. Platelet adhesion to surfaces preadsorbed to von Willebrand factor deficient plasma was the same as to surfaces preadsorbed with normal plasma.While it appears that surface bound fibrinogen does mediate the initial attachment of platelets to Biomer, the observation that the fibrinogen adsorption and platelet adhesion maxima do not coincide exactly also suggests that the degree of subsequent platelet adhesion is dictated not only by the amount of surface bound fibrinogen but also by its conformation.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Raquel G. D. Andrade ◽  
Bruno Reis ◽  
Benjamin Costas ◽  
Sofia A. Costa Lima ◽  
Salette Reis

Exploiting surface endocytosis receptors using carbohydrate-conjugated nanocarriers brings outstanding approaches to an efficient delivery towards a specific target. Macrophages are cells of innate immunity found throughout the body. Plasticity of macrophages is evidenced by alterations in phenotypic polarization in response to stimuli, and is associated with changes in effector molecules, receptor expression, and cytokine profile. M1-polarized macrophages are involved in pro-inflammatory responses while M2 macrophages are capable of anti-inflammatory response and tissue repair. Modulation of macrophages’ activation state is an effective approach for several disease therapies, mediated by carbohydrate-coated nanocarriers. In this review, polymeric nanocarriers targeting macrophages are described in terms of production methods and conjugation strategies, highlighting the role of mannose receptor in the polarization of macrophages, and targeting approaches for infectious diseases, cancer immunotherapy, and prevention. Translation of this nanomedicine approach still requires further elucidation of the interaction mechanism between nanocarriers and macrophages towards clinical applications.


2021 ◽  
Vol 476 (5) ◽  
pp. 2159-2170
Author(s):  
Qiangtang Chen ◽  
Yu Wu ◽  
Yachun Yu ◽  
Junxiang Wei ◽  
Wen Huang

AbstractHIV-1 transactivator protein (Tat) induces tight junction (TJ) dysfunction and amyloid-beta (Aβ) clearance dysfunction, contributing to the development and progression of HIV-1-associated neurocognitive disorder (HAND). The Rho/ROCK signaling pathway has protective effects on neurodegenerative disease. However, the underlying mechanisms of whether Rho/ROCK protects against HIV-1 Tat-caused dysfunction of TJ and neprilysin (NEP)/Aβ transfer receptor expression have not been elucidated. C57BL/6 mice were administered sterile saline (i.p., 100 μL) or Rho-kinase inhibitor hydroxyfasudil (HF) (i.p., 10 mg/kg) or HIV-1 Tat (i.v., 100 μg/kg) or HF 30 min before being exposed to HIV-1 Tat once a day for seven consecutive days. Evans Blue (EB) leakage was detected via spectrophotometer and brain slides in mouse brains. The protein and mRNA levels of zonula occludens-1 (ZO-1), occludin, NEP, receptor for advanced glycation end products (RAGE), and low-density lipoprotein receptor-related protein 1 (LRP1) in mouse brain microvessels were, respectively, analyzed by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. Exposure of the mice to HIV-1 Tat increased the amount of EB leakage, EB fluorescence intensity, blood–brain barrier (BBB) permeability, as well as the RAGE protein and mRNA levels, and decreased the protein and mRNA levels of ZO-1, occludin, NEP, and LRP1 in mouse brain microvessels. However, these effects were weakened by Rho-kinase inhibitor HF. Taken together, these results provide information that the Rho/ROCK signaling pathway is involved in HIV-1 Tat-induced dysfunction of TJ and NEP/Aβ transfer receptor expression in the C57BL/6 mouse brain. These findings shed some light on potentiality of inhibiting Rho/Rock signaling pathway in handling HAND.


Sign in / Sign up

Export Citation Format

Share Document