scholarly journals Amniotic fluid-derived multipotent stromal cells drive diabetic wound healing through modulation of macrophages

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Bibi S. Subhan ◽  
Jennifer Kwong ◽  
Joseph F. Kuhn ◽  
Arie Monas ◽  
Sonali Sharma ◽  
...  

Abstract Background Cutaneous wounds in patients with diabetes exhibit impaired healing due to physiological impediments and conventional care options are severely limited. Multipotent stromal cells (MSCs) have been touted as a powerful new therapy for diabetic tissue repair owing to their trophic activity and low immunogenicity. However, variations in sources and access are limiting factors for broader adaptation and study of MSC-based therapies. Amniotic fluid presents a relatively unexplored source of MSCs and one with wide availability. Here, we investigate the potential of amniotic fluid-derived multipotent stromal cells (AFMSCs) to restore molecular integrity to diabetic wounds, amend pathology and promote wound healing. Method We obtained third trimester amniotic fluid from term cesarean delivery and isolated and expanded MSCs in vitro. We then generated 10 mm wounds in Leprdb/db diabetic mouse skin, and splinted them open to allow for humanized wound modeling. Immediately after wounding, we applied AFMSCs topically to the sites of injuries on diabetic mice, while media application only, defined as vehicle, served as controls. Post-treatment, we compared healing time and molecular and cellular events of AFMSC-treated, vehicle-treated, untreated diabetic, and non-diabetic wounds. A priori statistical analyses measures determined significance of the data. Result Average time to wound closure was approximately 19 days in AFMSC-treated diabetic wounds. This was significantly lower than the vehicle-treated diabetic wounds, which required on average 27.5 days to heal (p < 0.01), and most similar to time of closure in wild type untreated wounds (an average of around 18 days). In addition, AFMSC treatment induced changes in the profiles of macrophage polarizing cytokines, resulting in a change in macrophage composition in the diabetic wound bed. We found no evidence of AFMSC engraftment or biotherapy induced immune response. Conclusion Treatment of diabetic wounds using amniotic fluid-derived MSCs encourages cutaneous tissue repair through affecting inflammatory cell behavior in the wound site. Since vehicle-treated diabetic wounds did not demonstrate accelerated healing, we determined that AFMSCs were therapeutic through their paracrine activities. Future studies should be aimed towards validating our observations through further examination of the paracrine potential of AFMSCs. In addition, investigations concerning safety and efficacy of this therapy in clinical trials should be pursued.

Author(s):  
Jiang-wen Wang ◽  
Yuan-zheng Zhu ◽  
Xuan Hu ◽  
Jia-ying Nie ◽  
Zhao-hui Wang ◽  
...  

Background: The healing of diabetic wounds is poor due to a collagen deposition disorder. Matrix metalloproteinase-9 (MMP-9) is closely related to collagen deposition in the process of tissue repair. Many studies have demonstrated that extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) promote diabetic wound healing by enhancing collagen deposition. Objective: In this study, we explored if ADSC-EVs could downregulate the expression of MMP-9 in diabetic wounds and promote wound healing by improving collagen deposition. The potential effects of ADSC-EVs on MMP-9 and diabetic wound healing were tested both in vitro and in vivo. Methods: We first evaluated the effect of ADSC-EVs on the proliferation and MMP-9 secretion of HaCaT cells treated with advanced glycation end product-bovine serum albumin (AGE-BSA), using CCK-8 western blot and MMP-9 enzyme-linked immunosorbent assay(ELISA). Next, the effect of ADSC-EVs on the healing, re-epithelialisation, collagen deposition, and MMP-9 concentration in diabetic wound fluids was evaluated in an immunodeficient mouse model via MMP-9 ELISA and haematoxylin and eosin, Masson’s trichrome, and immunofluorescence staining for MMP-9. Results: In vitro, ADSC-EVs promoted the proliferation and MMP-9 secretion of HaCaT cells.In vivo, ADSC-EVs accelerated diabetic wound healing by improving re-epithelialisation and collagen deposition and by inhibiting the expression of MMP-9. Conclusion: ADSC-EVs possessed the healing of diabetic wounds in a mouse model by inhibiting downregulating MMP-9 and improving collagen deposition.Thus ,ADSC-EVs are a promising candidate for the treatment of diabetic wounds .


2021 ◽  
Author(s):  
Jiankai Li ◽  
Tianshuai Zhang ◽  
Mingmang Pan ◽  
Feng Xue ◽  
Fang Lv ◽  
...  

Abstract Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Herein, a nanofiber/ hydrogel core-shell scaffold with three-dimensional (3D) multilayer patterned structure (3D-PT-P/GM) was introduced for promoting diabetic wound healing with improved angiogenesis. The results showed that the 3D-PT-P/GM scaffolds possessed multilayered structure with interlayer spacing of about 15-80 μm, and the hexagonal micropatterned structures were uniformly distributed on the surface of each layer. The nanofibers in the scaffold exhibited distinct core-shell structures with Gelatin methacryloyl (GelMA) hydrogel as the shell and Poly (D, L-lactic acid) (PDLLA) as the core. The results showed that the porosity, water retention time and water vapor permeability of the 3D-PT-P/GM scaffolds increased to 1.6 times, 21 times, and 1.9 times than that of the two-dimensional (2D) PDLLA nanofibrous scaffolds, respectively. The in vitro studies showed that the 3D-PT-P/GM scaffolds could significantly promote cell adhesion, proliferation, infiltration and migration throughout the scaffolds, and the expression of cellular communication protein-related genes, as well as angiogenesis-related genes in the same group, was remarkably upregulated. The in vivo results further demonstrated that the 3D-PT-P/GM scaffolds could not only effectively absorb exudate and provide a moist environment for the wound sites, but also significantly promote the formation of a 3D network of capillaries. As a result, the healing of diabetic wounds was accelerated with enhanced angiogenesis, granulation tissue formation, and collagen deposition. These results indicate that nanofiber/ hydrogel core-shell scaffolds with 3D multilayer patterned structures could provide a new strategy for facilitating chronic wound healing.


2021 ◽  
Author(s):  
Sheikh Tanzina Haque ◽  
Subbroto Kumar Saha ◽  
Md. Enamul Haque ◽  
Nirupam Biswas

Diabetic wounds often presage chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often warrant unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that...


2020 ◽  
Vol 133 (19) ◽  
pp. jcs235838
Author(s):  
Peilang Yang ◽  
Xiqiao Wang ◽  
Di Wang ◽  
Yan Shi ◽  
Meng Zhang ◽  
...  

ABSTRACTBesides regulating glucose levels, insulin has been reported to participate actively in many other functions, including modulating inflammatory reactions. In this study we investigated how topical insulin application would affect the diabetic wound healing process. We found that the excessive expression of insulin-degrading enzyme led to insufficient insulin levels in diabetic skin during wound healing, which ultimately reduced the recovery rate of diabetic wounds. We confirmed that topical insulin application could reverse the impaired inflammation reaction in the diabetic wound environment and promote healing of diabetic wounds. Our study revealed that insulin promoted apoptosis of neutrophils and subsequently triggered polarization of macrophages. Both in vivo and in vitro studies verified that insulin re-established phagocytosis function and promoted the process of phagocytosis-induced apoptosis in neutrophils. Furthermore, we found that insulin treatment also promoted efferocytosis of the apoptosed neutrophils by macrophages, and thus induced macrophages to change their polarization state from M1 to M2. In conclusion, our studies proved that the exogenous application of insulin could improve diabetic wound healing via the restoration of the inflammatory response.


2020 ◽  
Vol 17 (162) ◽  
pp. 20190712 ◽  
Author(s):  
Muhammet Emin Cam ◽  
Sila Yildiz ◽  
Hussain Alenezi ◽  
Sumeyye Cesur ◽  
Gul Sinemcan Ozcan ◽  
...  

In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-γ agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects.


2021 ◽  
Vol 10 (1) ◽  
pp. 653-670
Author(s):  
Ahmad Yasser Hamdi Nor Azlan ◽  
Haliza Katas ◽  
Mohd Fauzi Mh Busra ◽  
Nur Atiqah Mohamad Salleh ◽  
Ali Smandri

Abstract Metal nanoparticles have been widely used in the treatment of diabetic wounds owing to their proven antibacterial activity and enhanced wound healing effects. Therefore, in this review, we discuss the use of metal nanoparticles in managing diabetic wounds, mainly silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and zinc nanoparticles (ZnO nanoparticles), as well as their combination with biomaterials such as chitosan, bacterial cellulose, growth factors, etc. The combination of metal nanoparticles and biomaterials reportedly halts the growth and multiplication of bacterial strains commonly involved in diabetic wounds, including gram-positive (Staphylococcus aureus and Acinetobacter calcoaceticus) and gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae). Furthermore, these combinations have demonstrated enhanced wound healing of diabetic wounds during in vitro and in vivo studies. Additionally, we highlighted the barriers and challenges associated with the use of metal nanoparticles, including toxicities. Moreover, toxicities were mainly related to the method of synthesis employed, as well as the physical characteristics of nanoparticles, including size, shape, surface charge, and morphology. Collectively, dual-therapy composed of metal nanoparticles and biomaterials has been shown to promote wound healing and can be developed as a promising future therapy for better outcomes in diabetic wound healing.


2021 ◽  
Author(s):  
Shune Xiao ◽  
Chunfang Xiao ◽  
Yong Miao ◽  
Jin Wang ◽  
Ruosi Chen ◽  
...  

Abstract Background: Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, the common method of exosome administration is subcutaneous injection at several sites around the wound, causing further damage and preventing direct contact between the exosomes and the injury site. Methods: A diabetic mouse skin wound model was established. ADSC-derived exosomes (ADSC-Exos) were isolated and in vitro application of exosomes was evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs). After preparation and characterization of a scaffold of human acellular amniotic membrane (hAAM) loaded with ADSC-Exos in vitro , they were transplanted into wounds in vivo and wound healing phenomena were observed by histological and immunohistochemical analyses to identify the wound healing mechanism of the exosome-hAAM composites. Results: The hAAM scaffold dressing was very suitable for the delivery of exosomes. ADSC-Exos enhanced the proliferation and migration of HDFs and promoted proliferation and tube formation of HUVECs in vitro . In vivo results from a diabetic skin wound model showed that the hAAM-Exos dressing accelerated wound healing by regulating inflammation, stimulating vascularization and promoting the production of extracellular matrix. Conclusion: Exosome-incorporated hAAM scaffolds showed great potential in promoting diabetic skin wound healing, while also providing strong evidence for the future clinical applications of ADSC-derived exosomes.


2021 ◽  
Author(s):  
Qian Wei ◽  
Yaxi Wang ◽  
Kui Ma ◽  
Xiaowei Bian ◽  
Qiankun Li ◽  
...  

Abstract Background: Endothelial dysfunction caused by persistent hyperglycemia in diabetes is responsible for impaired angiogenesis in diabetic wounds. Exosomes are considered potential therapeutic tools to promote diabetic wound healing. The aim of this study was to investigate the effects of exosomes secreted by human umbilical cord mesenchymal stem cells (hucMSC-Exos) on angiogenesis under high glucose (HG) conditions in vivo and in vitro and to explore the underlying mechanisms.Methods: HucMSC-Exos were used to treat diabetic wounds and human umbilical vascular endothelial cells (HUVECs) exposed to HG. Wound healing and angiogenesis were assessed in vivo. The biological characteristics of HUVECs were examined in vitro. Expression of pro-angiogenesis genes in HUVECs was also examined by western blotting. The miRNAs contained within hucMSC-Exos were identified using miRNA microarrays and qRT-PCR. The roles of selected miRNAs in angiogenesis were assessed using specific agomirs and inhibitors.Results: In vivo, local application of hucMSC-Exos enhanced wound healing and angiogenesis. In vitro, hucMSC-Exos reduced senescence of HG-treated HUVECs and promoted proliferation, migration, and tube formation by inhibiting phosphatase and tensin homolog (PTEN) expression and activating the AKT/HIF-1α/VEGF pathways. MiR-221-3p was enriched in hucMSC-Exos. In vitro, MiR-221-3p downregulated PTEN and activated the AKT/HIF-1α/VEGF pathway to promote proliferation, migration, and tube formation in HG-treated HUVECs. In vivo, miR-221-3p agomirs mimicked the effects of hucMSC-Exos on wound healing and angiogenesis, whereas miR-221-3p inhibitors reversed their effects.Conclusions: Our findings suggest that hucMSC-Exos have regenerative and protective effects on HG-induced senescence in endothelial cells via transfer of miR-221-3p, thereby accelerating diabetic wound healing. Thus, hucMSC-Exos may be promising therapeutic candidates for improving diabetic wound angiogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shune Xiao ◽  
Chunfang Xiao ◽  
Yong Miao ◽  
Jin Wang ◽  
Ruosi Chen ◽  
...  

Abstract Background Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, how to use exosomes in wound treatment effectively is a problem that needs to be addressed at present. Methods A diabetic mouse skin wound model was established. ADSC-derived exosomes (ADSC-Exos) were isolated, and in vitro application of exosomes was evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs). After preparation and characterization of a scaffold of human acellular amniotic membrane (hAAM) loaded with ADSC-Exos in vitro, they were transplanted into wounds in vivo and wound healing phenomena were observed by histological and immunohistochemical analyses to identify the wound healing mechanism of the exosome-hAAM composites. Results The hAAM scaffold dressing was very suitable for the delivery of exosomes. ADSC-Exos enhanced the proliferation and migration of HDFs and promoted proliferation and tube formation of HUVECs in vitro. In vivo results from a diabetic skin wound model showed that the hAAM-Exos dressing accelerated wound healing by regulating inflammation, stimulating vascularization, and promoting the production of extracellular matrix. Conclusion Exosome-incorporated hAAM scaffolds showed great potential in promoting diabetic skin wound healing, while also providing strong evidence for the future clinical applications of ADSC-derived exosomes.


Cytotherapy ◽  
2015 ◽  
Vol 17 (8) ◽  
pp. 1036-1051 ◽  
Author(s):  
Dongrui Ma ◽  
Jonah Ee Hsiang Kua ◽  
Wee Keng Lim ◽  
Seng Teik Lee ◽  
Alvin Wen Choong Chua

Sign in / Sign up

Export Citation Format

Share Document