scholarly journals The tumor immune microenvironment of primary and metastatic HER2− positive breast cancers utilizing gene expression and spatial proteomic profiling

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ilana Schlam ◽  
Sarah E. Church ◽  
Tyler D. Hether ◽  
Krysta Chaldekas ◽  
Briana M. Hudson ◽  
...  

Abstract Background The characterization of the immune component of the tumor microenvironment (TME) of human epidermal growth factor receptor 2 positive (HER2+) breast cancer has been limited. Molecular and spatial characterization of HER2+ TME of primary, recurrent, and metastatic breast tumors has the potential to identify immune mediated mechanisms and biomarker targets that could be used to guide selection of therapies. Methods We examined 15 specimens from eight patients with HER2+ breast cancer: 10 primary breast tumors (PBT), two soft tissue, one lung, and two brain metastases (BM). Using molecular profiling by bulk gene expression TME signatures, including the Tumor Inflammation Signature (TIS) and PAM50 subtyping, as well as spatial characterization of immune hot, warm, and cold regions in the stroma and tumor epithelium using 64 protein targets on the GeoMx Digital Spatial Profiler. Results PBT had higher infiltration of immune cells relative to metastatic sites and higher protein and gene expression of immune activation markers when compared to metastatic sites. TIS scores were lower in metastases, particularly in BM. BM also had less immune infiltration overall, but in the stromal compartment with the highest density of immune infiltration had similar levels of T cells that were less activated than PBT stromal regions suggesting immune exclusion in the tumor epithelium. Conclusions Our findings show stromal and tumor localized immune cells in the TME are more active in primary versus metastatic disease. This suggests patients with early HER2+ breast cancer could have more benefit from immune-targeting therapies than patients with advanced disease.

2021 ◽  
Author(s):  
Ilana Schlam ◽  
Sarah E. Church ◽  
Tyler D Hether ◽  
Krysta Chaldekas ◽  
Briana M Hudson ◽  
...  

Abstract Background The characterization of the immune component of the tumor microenvironment (TME) of human epidermal growth factor receptor 2 positive (HER2+) breast cancer has been limited. Molecular and spatial characterization of HER2 + TME of primary, recurrent, and metastatic breast tumors has the potential to identify immune mediated mechanisms and biomarker targets that could be used to guide selection of therapies. Methods We examined 15 specimens from eight patients with HER2 + breast cancer: 10 primary breast tumors (PBT), two soft tissue, one lung, and two brain metastases (BM). Using molecular profiling by bulk gene expression TME signatures, including the Tumor Inflammation Signature (TIS) and PAM50 subtyping, as well as spatial characterization of immune hot, warm, and cold regions in the stroma and tumor epithelium using 64 protein targets on the GeoMx Digital Spatial Profiler. Results PBT had higher infiltration of immune cells relative to metastatic sites and higher protein and gene expression of immune activation markers when compared to metastatic sites. TIS scores were lower in metastases, particularly in BM. BM also had less immune infiltration overall, but in the stromal compartment with the highest density of immune infiltration had similar levels of T cells that were less activated than PBT stromal regions suggesting immune exclusion in the tumor epithelium. Conclusions Our findings show stromal and tumor localized immune cells in the TME are more active in primary versus metastatic disease. This suggests patients with early HER2 + breast cancer could have more benefit from immune-targeting therapies than patients with advanced disease.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaia Griguolo ◽  
Maria Vittoria Dieci ◽  
Laia Paré ◽  
Federica Miglietta ◽  
Daniele Giulio Generali ◽  
...  

AbstractLittle is known regarding the interaction between immune microenvironment and tumor biology in hormone receptor (HR)+/HER2− breast cancer (BC). We here assess pretreatment gene-expression data from 66 HR+/HER2− early BCs from the LETLOB trial and show that non-luminal tumors (HER2-enriched, Basal-like) present higher tumor-infiltrating lymphocyte levels than luminal tumors. Moreover, significant differences in immune infiltrate composition, assessed by CIBERSORT, were observed: non-luminal tumors showed a more proinflammatory antitumor immune infiltrate composition than luminal ones.


2021 ◽  
Vol 20 ◽  
pp. 153303382098329
Author(s):  
Yujie Weng ◽  
Wei Liang ◽  
Yucheng Ji ◽  
Zhongxian Li ◽  
Rong Jia ◽  
...  

Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes ( CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Richard Buus ◽  
Zsolt Szijgyarto ◽  
Eugene F. Schuster ◽  
Hui Xiao ◽  
Ben P. Haynes ◽  
...  

AbstractMulti-gene prognostic signatures including the Oncotype® DX Recurrence Score (RS), EndoPredict® (EP) and Prosigna® (Risk Of Recurrence, ROR) are widely used to predict the likelihood of distant recurrence in patients with oestrogen-receptor-positive (ER+), HER2-negative breast cancer. Here, we describe the development and validation of methods to recapitulate RS, EP and ROR scores from NanoString expression data. RNA was available from 107 tumours from postmenopausal women with early-stage, ER+, HER2− breast cancer from the translational Arimidex, Tamoxifen, Alone or in Combination study (TransATAC) where previously these signatures had been assessed with commercial methodology. Gene expression was measured using NanoString nCounter. For RS and EP, conversion factors to adjust for cross-platform variation were estimated using linear regression. For ROR, the steps to perform subgroup-specific normalisation of the gene expression data and calibration factors to calculate the 46-gene ROR score were assessed and verified. Training with bootstrapping (n = 59) was followed by validation (n = 48) using adjusted, research use only (RUO) NanoString-based algorithms. In the validation set, there was excellent concordance between the RUO scores and their commercial counterparts (rc(RS) = 0.96, 95% CI 0.93–0.97 with level of agreement (LoA) of −7.69 to 8.12; rc(EP) = 0.97, 95% CI 0.96–0.98 with LoA of −0.64 to 1.26 and rc(ROR) = 0.97 (95% CI 0.94–0.98) with LoA of −8.65 to 10.54). There was also a strong agreement in risk stratification: (RS: κ = 0.86, p < 0.0001; EP: κ = 0.87, p < 0.0001; ROR: κ = 0.92, p < 0.001). In conclusion, the calibrated algorithms recapitulate the commercial RS and EP scores on individual biopsies and ROR scores on samples based on subgroup-centreing method using NanoString expression data.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 594-594
Author(s):  
Andrea Walens ◽  
Linnea T Olsson ◽  
Sarah Van Alsten ◽  
Lisa A. Carey ◽  
Melissa A. Troester ◽  
...  

594 Background: Black women with breast cancer have higher mortality than White women. Differences in tumor biology contribute to racial disparities in breast cancer outcomes. BIRC5 gene encodes survivin, an inhibitor of apoptosis protein, and an independent marker of poor prognosis in breast cancer. Cancer patients have anti-survivin antibodies and circulating survivin-specific T cells, suggesting that survivin may be targetable. Several ongoing antibody-mediated, vaccine strategies that target survivin are being developed. Nevertheless, most survivin studies were conducted in cohorts of White women. To date, the prevalence and/or role of survivin expression in breast tumors from Black women has not been studied. Methods: Associations between BIRC5 expression, clinicopathological and molecular features were measured in the population-based Carolina Breast Cancer Study (CBCS) and The Cancer Genome Atlas (TCGA) breast cancer cohort. Gene expression was measured by Nanostring RNA counting and split into BIRC5 high (4th quartile) and low categories based on log2 gene expression values. Relative frequency differences (RFD) for the association between BIRC5 high and clinicopathologic features were estimated. RNA based p53 mutant status and homologous recombination deficiency (HRD) status were included in RFD analysis. Receiver operating characteristic (ROC) curves were used to illustrate the potential of BIRC5 expression to distinguish patients who achieved pathological complete response (pCR) after receiving neoadjuvant chemotherapy in CBCS (133 Black, 49 non-Black). Results: BIRC5 gene expression was significantly increased in tumors from 966 Black patients compared to 1,497 non-Black (p < 0.00001), adjusting for stage and subtype. BIRC5 high tumors were significantly more expressed in higher stage and basal-like breast cancer subtypes. BIRC5 high tumors were also significantly enriched for expression of genes involved in p53 loss and HRD. Furthermore, in an analysis of 182 CBCS patients, BIRC5 gene expression alone predicted pCR with similar overall AUC to ROR-PT multigene signatures (AUC 0.62 vs 0.64). Conclusions: Our study shows that survivin expression is particularly high in breast tumors from Black women. This was associated with more aggressive clinicopathological features in addition to p53 mutant and HRD status. Black women with breast cancer represent an area of unmet clinical need and could potentially benefit from anti-survivin targetable treatment strategies. Further studies are needed to help close this gap which constitutes the largest disparity among cancer-specific diseases.[Table: see text]


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
G. K. Chimal-Ramírez ◽  
N. A. Espinoza-Sánchez ◽  
D. Utrera-Barillas ◽  
L. Benítez-Bribiesca ◽  
J. R. Velázquez ◽  
...  

Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC) lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteasesMMP1andMMP9and inflammatoryCOX2genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.


Sign in / Sign up

Export Citation Format

Share Document