scholarly journals MMP1, MMP9, and COX2 Expressions in Promonocytes Are Induced by Breast Cancer Cells and Correlate with Collagen Degradation, Transformation-Like Morphological Changes in MCF-10A Acini, and Tumor Aggressiveness

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
G. K. Chimal-Ramírez ◽  
N. A. Espinoza-Sánchez ◽  
D. Utrera-Barillas ◽  
L. Benítez-Bribiesca ◽  
J. R. Velázquez ◽  
...  

Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC) lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteasesMMP1andMMP9and inflammatoryCOX2genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.

2018 ◽  
Vol 19 (10) ◽  
pp. 2885 ◽  
Author(s):  
Alessandra Gentilini ◽  
Mirella Pastore ◽  
Fabio Marra ◽  
Chiara Raggi

Cholangiocarcinoma (CCA) is a severe and mostly intractable adenocarcinoma of biliary epithelial cells. A typical feature of CCA is its highly desmoplastic microenvironment containing fibrogenic connective tissue and an abundance of immune cells (T lymphocytes, Natural Killer (NK) cells, and macrophages) infiltrating tumor epithelium. This strong desmoplasia is orchestrated by various soluble factors and signals, suggesting a critical role in shaping a tumor growth-permissive microenvironment that is responsible for CCA poor clinical outcome. Indeed stroma not only provides an abundance of factors that facilitate CCA initiation, growth and progression, but also a prejudicial impact on therapeutic outcome. This review will give an overview of tumor-stroma signaling in a microenvironment critically regulating CCA development and progression. Identification of CCA secreted factors by both the fibroblast component and immune cell subsets might provide ample opportunities for pharmacological targeting of this type of cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuai Liu ◽  
Keji Zhao

The code of life is not only encrypted in the sequence of DNA but also in the way it is organized into chromosomes. Chromosome architecture is gradually being recognized as an important player in regulating cell activities (e.g., controlling spatiotemporal gene expression). In the past decade, the toolbox for elucidating genome structure has been expanding, providing an opportunity to explore this under charted territory. In this review, we will introduce the recent advancements in approaches for mapping spatial organization of the genome, emphasizing applications of these techniques to immune cells, and trying to bridge chromosome structure with immune cell activities.


2021 ◽  
Vol 11 ◽  
Author(s):  
Young-Sil An ◽  
Se-Hyuk Kim ◽  
Tae Hoon Roh ◽  
So Hyun Park ◽  
Tae-Gyu Kim ◽  
...  

BackgroundThe purpose of this study was to investigate the correlation between 18F-fluorodeoxyglucose (FDG) uptake and infiltrating immune cells in metastatic brain lesions.MethodsThis retrospective study included 34 patients with metastatic brain lesions who underwent brain 18F-FDG positron emission tomography (PET)/computed tomography (CT) followed by surgery. 18F-FDG uptake ratio was calculated by dividing the standardized uptake value (SUV) of the metastatic brain lesion by the contralateral normal white matter uptake value. We investigated the clinicopathological characteristics of the patients and analyzed the correlation between 18F-FDG uptake and infiltration of various immune cells. In addition, we evaluated immune-expression levels of glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and Ki-67 in metastatic brain lesions.ResultsThe degree of 18F-FDG uptake of metastatic brain lesions was not significantly correlated with clinical parameters. There was no significant relationship between the 18F-FDG uptake and degree of immune cell infiltration in brain metastasis. Furthermore, other markers, such as GLUT1, HK2, and Ki-67, were not correlated with degree of 18F-FDG uptake. In metastatic brain lesions that originated from breast cancer, a higher degree of 18F-FDG uptake was observed in those with high expression of CD68.ConclusionsIn metastatic brain lesions, the degree of 18F-FDG uptake was not significantly associated with infiltration of immune cells. The 18F-FDG uptake of metastatic brain lesions from breast cancer, however, might be associated with macrophage activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Silu Meng ◽  
Xinran Fan ◽  
Jianwei Zhang ◽  
Ran An ◽  
Shuang Li

Gap Junction Protein Alpha 1 (GJA1) belongs to the gap junction family and has been widely studied in cancers. We evaluated the role of GJA1 in cervical cancer (CC) using public data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. The difference of GJA1 expression level between CC and normal tissues was analyzed by the Gene Expression Profiling Interactive Analysis (GEPIA), six GEO datasets, and the Human Protein Atlas (HPA). The relationship between clinicopathological features and GJA1 expression was analyzed by the chi-squared test and the logistic regression. Kaplan–Meier survival analysis and Cox proportional hazard regression analysis were used to assessing the effect of GJA1 expression on survival. Gene set enrichment analysis (GSEA) was used to screen the signaling pathways regulated by GJA1. Immune Cell Abundance Identifier (ImmuCellAI) was chosen to analyze the immune cells affected by GJA1. The expression of GJA1 in CC was significantly lower than that in normal tissues based on the GEPIA, GEO datasets, and HPA. Both the chi-squared test and the logistic regression showed that high-GJA1 expression was significantly correlated with keratinization, hormone use, tumor size, and FIGO stage. The Kaplan–Meier curves suggested that high-GJA1 expression could indicate poor prognosis ( p = 0.0058 ). Multivariate analysis showed that high-GJA1 expression was an independent predictor of poor overall survival (HR, 4.084; 95% CI, 1.354-12.320; p = 0.013 ). GSEA showed many cancer-related pathways, such as the p53 signaling pathway and the Wnt signaling pathway, were enriched in the high-GJA1-expression group. Immune cell abundance analysis revealed that the abundance of CD8 naive, DC, and neutrophil was significantly increased in the high-GJA1-expression group. In conclusion, GJA1 can be regarded as a potential prognostic marker of poor survival and therapeutic target in CC. Moreover, many cancer-related pathways may be the critical pathways regulated by GJA1. Furthermore, GJA1 can affect the abundance of immune cells.


2020 ◽  
Vol 18 (05) ◽  
pp. 2050030
Author(s):  
Dongmei Ai ◽  
Gang Liu ◽  
Xiaoxin Li ◽  
Yuduo Wang ◽  
Man Guo

In addition to tumor cells, a large number of immune cells are found in the tumor microenvironment (TME) of cancer patients. Tumor-infiltrating immune cells play an important role in tumor progression and patient outcome. We improved the relative proportion estimation algorithm of immune cells based on RNA-seq gene expression profiling and solved the multiple linear regression model by support vector regression ([Formula: see text]-SVR). These steps resulted in increased robustness of the algorithm and more accurate calculation of the relative proportion of different immune cells in cancer tissues. This method was applied to the analysis of infiltrating immune cells based on 41 pairs of colorectal cancer tissues and normal solid tissues. Specifically, we compared the relative fractions of six types of immune cells in colorectal cancer tissues to those found in normal solid tissue samples. We found that tumor tissues contained a higher proportion of CD8 T cells and neutrophils, while B cells and monocytes were relatively low. Our pipeline for calculating immune cell proportion using gene expression profile data can be freely accessed from GitHub at https://github.com/gutmicrobes/EICS.git.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna-Maria Larsson ◽  
Anna Roxå ◽  
Karin Leandersson ◽  
Caroline Bergenfelz

Abstract Tumors affect the immune system, locally and systemically. The frequencies of specific circulating immune cell populations correlate with disease progression as well as prognosis of the patients. Although largely neglected, conventional antitumoral therapies often possess immunomodulatory properties and affect the levels of specific immune cell populations. Most information, however, derive from animal or in vitro studies. As this could impact prognosis as well as response to therapy, further studies of the effects of treatment on circulating immune cells in patients are warranted. In this pilot study, we evaluated a wide panel of circulating immune cells over time (up to six months) in ten patients with metastatic breast cancer receiving standard antitumoral regimens. Overall, endocrine therapy tends to enrich for natural killer (NK) and natural killer T (NKT) cells in the circulation, whereas both chemotherapy and endocrine therapy reduce the levels of circulating monocytic myeloid-derived suppressor cells (Mo-MDSCs). This indicates that the systemic immunosuppressive profile observed in patients tends to revert over the course of systemic therapy and holds promise for future combination treatment with standard antitumoral agents and immunotherapy.


2006 ◽  
Vol 4 (6) ◽  
pp. 33
Author(s):  
Martin Buess ◽  
Dimitry S.A. Nuyten ◽  
Trevor Hastie ◽  
Patrick O. Brown

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Pingzhang Wang ◽  
Yehong Yang ◽  
Wenling Han ◽  
Dalong Ma

Abstract Gene expression is highly dynamic and plastic. We present a new immunological database, ImmuSort. Unlike other gene expression databases, ImmuSort provides a convenient way to view global differential gene expression data across thousands of experimental conditions in immune cells. It enables electronic sorting, which is a bioinformatics process to retrieve cell states associated with specific experimental conditions that are mainly based on gene expression intensity. A comparison of gene expression profiles reveals other applications, such as the evaluation of immune cell biomarkers and cell subsets, identification of cell specific and/or disease-associated genes or transcripts, comparison of gene expression in different transcript variants and probe set quality evaluation. A plasticity score is introduced to measure gene plasticity. Average rank and marker evaluation scores are used to evaluate biomarkers. The current version includes 31 human and 17 mouse immune cell groups, comprising 10,422 and 3,929 microarrays derived from public databases, respectively. A total of 20,283 human and 20,963 mouse genes are available to query in the database. Examples show the distinct advantages of the database. The database URL is http://immusort.bjmu.edu.cn/.


2021 ◽  
Author(s):  
Mehdi Manoochehri ◽  
Thomas Hielscher ◽  
Nasim Borhani ◽  
Clarissa Gerhäuser ◽  
Olivia Fletcher ◽  
...  

Abstract Background: A shift in the proportions of blood immune cells is a hallmark of cancer development. Here, we investigated whether methylation-derived immune cell type ratios and methylation-derived neutrophil-to-lymphocyte ratios (mdNLRs) are associated with triple-negative breast cancer (TNBC). Methods: Leukocyte subtype-specific un/methylated CpG sites were selected and methylation levels at these sites used as proxies for immune cell type proportions and mdNLR estimation in 231 TNBC cases and 231 age-matched controls. Data were validated using the Houseman deconvolution method. Additionally, the natural killer (NK) cell ratio was measured in a prospective sample set of 146 TNBC cases and 146 age-matched controls. Results: The mdNLRs were higher in TNBC cases compared with controls and associated with TNBC (odds ratio (OR) range (2.66-4.29), all Padj.<1e-04). A higher neutrophil ratio and lower ratios of NK cells, CD4+ T cells, CD8+ T cells, monocytes, and B cells were associated with TNBC. The strongest association was observed with decreased NK cell ratio (OR range (1.28-1.42), all Padj.<1e-04). The NK cell ratio was also significantly lower in pre-diagnostic samples of TNBC cases compared with controls (P=0.019).Conclusion: This immunomethylomic study shows that a shift in the ratios/proportions of leukocyte subtypes is associated with TNBC, with decreased NK cell showing the strongest association. These findings improve our knowledge of the role of the immune system in TNBC and point to the possibility of using NK cell level as a non-invasive molecular marker for TNBC risk assessment, early detection, and prevention.


Author(s):  
Rodrigo Nalio Ramos ◽  
Samuel Campanelli Freitas Couto ◽  
Theo Gremen M. Oliveira ◽  
Paulo Klinger ◽  
Tarcio Teodoro Braga ◽  
...  

Chimeric antigen receptor (CAR) engineering for T cells and natural killer cells (NK) are now under clinical evaluation for the treatment of hematologic cancers. Although encouraging clinical results have been reported for hematologic diseases, pre-clinical studies in solid tumors have failed to prove the same effectiveness. Thus, there is a growing interest of the scientific community to find other immune cell candidate to express CAR for the treatment of solid tumors and other diseases. Mononuclear phagocytes may be the most adapted group of cells with potential to overcome the dense barrier imposed by solid tumors. In addition, intrinsic features of these cells, such as migration, phagocytic capability, release of soluble factors and adaptive immunity activation, could be further explored along with gene therapy approaches. Here, we discuss the elements that constitute the tumor microenvironment, the features and advantages of these cell subtypes and the latest studies using CAR-myeloid immune cells in solid tumor models.


Sign in / Sign up

Export Citation Format

Share Document