scholarly journals Abnormalities of age-related T cell senescence in Parkinson’s disease

2018 ◽  
Vol 15 (1) ◽  
Author(s):  
C. H. Williams-Gray ◽  
R. S. Wijeyekoon ◽  
K. M. Scott ◽  
S. Hayat ◽  
R. A. Barker ◽  
...  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Antonina Kouli ◽  
Melanie Jensen ◽  
Vanesa Papastavrou ◽  
Kirsten M. Scott ◽  
Claire Kolenda ◽  
...  

Abstract Background Immune involvement is well-described in Parkinson’s disease (PD), including an adaptive T lymphocyte response. Given the increasing prevalence of Parkinson’s disease in older age, age-related dysregulation of T lymphocytes may be relevant in this disorder, and we have previously observed changes in age-associated CD8+ T cell subsets in mid-stage PD. This study aimed to further characterise T cell immunosenescence in newly diagnosed PD patients, including shifts in CD4+ and CD8+ subpopulations, and changes in markers of cellular ageing in CD8+ T lymphocytes. Methods Peripheral blood mononuclear cells were extracted from the blood of 61 newly diagnosed PD patients and 63 age- and sex-matched controls. Flow cytometric analysis was used for immunophenotyping of CD8+ and CD4+ lymphocyte subsets, and analysis of recent thymic emigrant cells. Telomere length within CD8+ T lymphocytes was assessed, as well as the expression of the telomerase reverse transcriptase enzyme (hTERT), and the cell-ageing markers p16INK4a and p21CIP1/Waf1. Results The number of CD8+ TEMRA T cells was found to be significantly reduced in PD patients compared to controls. The expression of p16INK4a in CD8+ lymphocytes was also lower in patients versus controls. Chronic latent CMV infection was associated with increased senescent CD8+ lymphocytes in healthy controls, but this shift was less apparent in PD patients. Conclusions Taken together, our data demonstrate a reduction in CD8+ T cell replicative senescence which is present at the earliest stages of Parkinson’s disease.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 788
Author(s):  
Rhianne Broadway ◽  
Nikita M. Patel ◽  
Lucy E. Hillier ◽  
Amal El-Briri ◽  
Yulia S. Korneva ◽  
...  

Epithelial ovarian cancer (EOC) is one of the most common causes of cancer-related deaths among women and is associated with age and age-related diseases. With increasing evidence of risks associated with metabolic inflammatory conditions, such as obesity and type 2 diabetes mellitus (T2DM), it is important to understand the complex pathophysiological mechanisms underlying cancer progression and metastasis. Age-related conditions can lead to both genotypic and phenotypic immune function alterations, such as induction of senescence, which can contribute to disease progression. Immune senescence is a common phenomenon in the ageing population, which is now known to play a role in multiple diseases, often detrimentally. EOC progression and metastasis, with the highest rates in the 75–79 age group in women, have been shown to be influenced by immune cells within the “milky spots” or immune clusters of the omentum. As T2DM has been reported to cause T cell senescence in both prediabetic and diabetic patients, there is a possibility that poor prognosis in EOC patients with T2DM is partly due to the accumulation of senescent T cells in the omentum. In this review, we explore this hypothesis with recent findings, potential therapeutic approaches, and future directions.


2021 ◽  
Author(s):  
Daniel S Krauth ◽  
Christina M Jamros ◽  
Shayna C Rivard ◽  
Niels H Olson ◽  
Ryan C Maves

ABSTRACT We describe a patient with subclinical coccidioidomycosis who experienced rapid disease dissemination shortly after SARS-CoV-2 infection, suggesting host immune response dysregulation to coccidioidomycosis by SARS-CoV-2. We hypothesize that disrupted cell-mediated signaling may result after SARS-CoV-2 infection leading to functional exhaustion and CD8+ T-cell senescence with impairment in host cellular response to Coccidioides infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Megan C. Bakeberg ◽  
Madison E. Hoes ◽  
Anastazja M. Gorecki ◽  
Frances Theunissen ◽  
Abigail L. Pfaff ◽  
...  

AbstractAbnormal mitochondrial function is a key process in the pathogenesis of Parkinson’s disease (PD). The central pore-forming protein TOM40 of the mitochondria is encoded by the translocase of outer mitochondrial membrane 40 homologue gene (TOMM40). The highly variant ‘523’ poly-T repeat is associated with age-related cognitive decline and age of onset in Alzheimer’s disease, but whether it plays a role in modifying the risk or clinical course of PD it yet to be elucidated. The TOMM40 ‘523’ allele length was determined in 634 people with PD and 422 healthy controls from an Australian cohort and the Parkinson’s Progression Markers Initiative (PPMI) cohort, using polymerase chain reaction or whole genome sequencing analysis. Genotype and allele frequencies of TOMM40 ‘523’ and APOE ε did not differ significantly between the cohorts. Analyses revealed TOMM40 ‘523’ allele groups were not associated with disease risk, while considering APOE ε genotype. Regression analyses revealed the TOMM40 S/S genotype was associated with a significantly later age of symptom onset in the PPMI PD cohort, but not after correction for covariates, or in the Australian cohort. Whilst variation in the TOMM40 ‘523’ polymorphism was not associated with PD risk, the possibility that it may be a modifying factor for age of symptom onset warrants further investigation in other PD populations.


Author(s):  
Junghee J. Shin ◽  
Jason Catanzaro ◽  
Jennifer R. Yonkof ◽  
Ottavia Delmonte ◽  
Keith Sacco ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kelly B. Menees ◽  
Rachael H. Earls ◽  
Jaegwon Chung ◽  
Janna Jernigan ◽  
Nikolay M. Filipov ◽  
...  

Abstract Background Physiological homeostasis decline, immunosenescence, and increased risk for multiple diseases, including neurodegeneration, are all hallmarks of ageing. Importantly, it is known that the ageing process is sex-biased. For example, there are sex differences in predisposition for multiple age-related diseases, including neurodegenerative and autoimmune diseases. However, sex differences in age-associated immune phenotypes are not clearly understood. Results Here, we examined the effects of age on immune cell phenotypes in both sexes of C57BL/6J mice with a particular focus on NK cells. We found female-specific spleen weight increases with age and concordant reduction in the number of splenocytes per gram of spleen weight compared to young females. To evaluate sex- and age-associated changes in splenic immune cell composition, we performed flow cytometry analysis. In male mice, we observed an age-associated reduction in the frequencies of monocytes and NK cells; female mice displayed a reduction in B cells, NK cells, and CD8 + T cells and increased frequency of monocytes and neutrophils with age. We then performed a whole blood stimulation assay and multiplex analyses of plasma cytokines and observed age- and sex-specific differences in immune cell reactivity and basal circulating cytokine concentrations. As we have previously illustrated a potential role of NK cells in Parkinson’s disease, an age-related neurodegenerative disease, we further analyzed age-associated changes in NK cell phenotypes and function. There were distinct differences between the sexes in age-associated changes in the expression of NK cell receptors, IFN-γ production, and impairment of α-synuclein endocytosis. Conclusions This study demonstrates sex- and age-specific alterations in splenic lymphocyte composition, circulating cytokine/chemokine profiles, and NK cell phenotype and effector functions. Our data provide evidence that age-related physiological perturbations differ between the sexes which may help elucidate sex differences in age-related diseases, including neurodegenerative diseases, particularly Parkinson’s disease, where immune dysfunction is implicated in their etiology.


2016 ◽  
Vol 2 ◽  
pp. 33-34
Author(s):  
Olivia Zaegel-Faucher ◽  
Corinne Nicolino-Brunet ◽  
Elisabeth Jouve ◽  
Jacques Reynes ◽  
Pierre Dellamonica ◽  
...  

2018 ◽  
Vol 18 (5-6) ◽  
pp. 233-238
Author(s):  
Frederic Sampedro ◽  
Juan Marín-Lahoz ◽  
Saul Martínez-Horta ◽  
Javier Pagonabarraga ◽  
Jaime Kulisevsky

The role of cerebrospinal fluid (CSF) biomarkers such as CSF α-synuclein and CSF tau in predicting cognitive decline in Parkinson’s disease (PD) continues to be inconsistent. Here, using a cohort of de novo PD patients with preserved cognition from the Parkinson’s Progression Markers Initiative (PPMI), we show that the SNCA rs356181 single nucleotide polymorphism (SNP) modulates the effect of these CSF biomarkers on cortical thinning. Depending on this SNP’s genotype, cortical atrophy was associated with either higher or lower CSF biomarker levels. Additionally, this SNP modified age-related atrophy. Importantly, the integrity of the brain regions where this phenomenon was observed correlated with cognitive measures. These results suggest that this genetic variation of the gene encoding the α-synuclein protein, known to be involved in the development of PD, also interferes in its subsequent neurodegeneration. Overall, our findings could shed light on the so far incongruent association of common CSF biomarkers with cognitive decline in PD.


Sign in / Sign up

Export Citation Format

Share Document