scholarly journals Revealing the coexistence of differentiation and communication in an endemic hare, Lepus yarkandensis (Mammalia, Leporidae) using specific-length amplified fragment sequencing

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Buweihailiqiemu Ababaikeri ◽  
Yucong Zhang ◽  
Huiying Dai ◽  
Wenjuan Shan

Abstract Background The Yarkand hare (Lepus yarkandensis Günther, 1875) is endemic to oasis and desert areas around the Tarim Basin in the Xinjiang Uyghur Autonomous Region of northwest China; however, genome-wide information for this species remains limited. Moreover, the genetic variation, genetic structure, and phylogenetic relationships of Yarkand hare from the plateau mountain regions have not been reported. Thus, we used specific-length amplified fragment sequencing (SLAF-seq) technology to evaluate the genetic diversity of 76 Yarkand hares from seven geographic populations in the northern and southwestern parts of the Tarim Basin to investigate single-nucleotide polymorphism (SNP) marker-based population differentiation and evolutionary processes. Selective sweep analysis was conducted to identify genetic differences between populations. Results Using SLAF-seq, a total of 1,835,504 SNPs were initially obtained, of which 308,942 high-confidence SNPs were selected for further analysis. Yarkand hares exhibited a relatively high degree of genetic diversity at the SNP level. Based on pairwise FST estimates, the north and southwest groups showed a moderate level of genetic differentiation. Phylogenetic tree and population structure analyses demonstrated evident systematic phylogeographical structure patterns consistent with the geographical distribution of the hares. Hierarchical analysis of molecular variation further indicated that genetic variation was mainly observed within populations. Low to moderate genetic differentiation also occurred among populations despite a common genomic background, likely due to geographical barriers, genetic drift, and differential selection pressure of distinct environments. Nevertheless, the observed lineage-mixing pattern, as indicated by the evolutionary tree, principal component analysis, population structure, and TreeMix analyses, suggests a certain degree of gene flow between the north and southwest groups. This may be related to the migration of hares to high-altitude water sources southwest of the basin during glacial climatic oscillations, as well as river re-diffusion and oasis restoration in the basin following the glacial period. We also identified candidate genes, and their associated gene ontology terms and pathways, related to the adaptation of Yarkand hares to different environmental habitats. Conclusions The identified genome-wide SNPs, genetic diversity, and population structure of Yarkand hares expand our understanding of the genetic background of this endemic species and provide valuable insights into its environmental adaptation, allowing for further exploration of the underlying mechanisms.

2021 ◽  
Author(s):  
Guai-qiang Chai ◽  
Yizhong Duan ◽  
Peipei Jiao ◽  
Zhongyu Du ◽  
Furen Kang

Abstract Background:Elucidating and revealing the population genetic structure, genetic diversity and recombination is essential for understanding the evolution and adaptation of species. Ammopiptanthus, which is an endangered survivor from the Tethys in the Tertiary Period, is the only evergreen broadleaf shrub grown in Northwest of China. However, little is known about its genetic diversity and underlying adaptation mechanisms. Results:Here, 111 Ammopiptanthus individuals collected from fifteen natural populations in estern China were analyzed by means of the specific locus amplified fragment sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) detected by SLAF-seq, genetic diversity and markers associated with climate and geographical distribution variables were identified. The results of genetic diversity and genetic differentiation revealed that all fifteen populations showed medium genetic diversity, with PIC values ranging from 0.1648 to 0.3081. AMOVA and Fst indicated that a low genetic differentiation existed among populations. Phylogenetic analysis showed that NX-BG and NMG-DQH of fifteen populations have the highest homology,while the genetic structure analysis revealed that these Ammopiptanthus germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in each group. In addition, the genome-wide linkage disequilibrium (LD) and principal component analysis showed that Ammopiptanthus nanus had a more diverse genomic background, and all genetic populations were clearly distinguished, although different degrees of introgression were detected in these groups. Conclusion:Our study could provide guidance to the future design of association studies and the systematic utilization and protection of the genetic variation characterizing the Ammopiptanthus.


2020 ◽  
Vol 49 (6) ◽  
pp. 1083-1092
Author(s):  
S Goitom ◽  
M.G. Gicheha ◽  
F.K. Njonge ◽  
N Kiplangat

Indigenous cattle play a vital role in subsistence and livelihood of pastoral producers in Eritrea. In order to optimally utilize and conserve these valuable indigenous cattle genetic resources, the need to carry out an inventory of their genetic diversity was recognized. This study assessed the genetic variability, population structure and admixture of the indigenous cattle populations (ICPs) of Eritrea using a genotype by sequencing (GBS) approach. The authors genotyped 188 animals, which were sampled from 27 cattle populations in three diverse agro-ecological zones (western lowlands, highlands and eastern lowlands). The genome-wide analysis results from this study revealed genetic diversity, population structure and admixture among the ICPs. Averages of the minor allele frequency (AF), observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (FIS) were 0.157, 0.255, 0.218, and -0.089, respectively. Nei’s genetic distance (Ds) between populations ranged from 0.24 to 0.27. Mean population differentiation (FST) ranged from 0.01 to 0.30. Analysis of molecular variance revealed high genetic variation between the populations. Principal component analysis and the distance-based unweighted pair group method and arithmetic mean analyses revealed weak substructure among the populations, separating them into three genetic clusters. However, multi-locus clustering had the lowest cross-validation error when two genetically distinct groups were modelled. This information about genetic diversity and population structure of Eritrean ICPs provided a basis for establishing their conservation and genetic improvement programmes. Keywords: genetic variability, molecular characterization, population differentiation


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0231753
Author(s):  
Haitian Fang ◽  
Huiyan Liu ◽  
Ruoshuang Ma ◽  
Yuxuan Liu ◽  
Jinna Li ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10485
Author(s):  
Zhixin Wang ◽  
Yalin Sun ◽  
Xinfang Huang ◽  
Feng Li ◽  
Yuping Liu ◽  
...  

Taro (Colocasia esculenta) is an important root and tuber crop cultivated worldwide. There are two main types of taro that vary in morphology of corm and cormel, ‘dasheen’ and ‘eddoe’. The eddoe type (Colocasia esculenta var. antiquorium) is predominantly distributed throughout China. Characterizing the genetic diversity present in the germplasm bank of taro is fundamental to better manage, conserve and utilize the genetic resources of this species. In this study, the genetic diversity of 234 taro accessions from 16 provinces of China was assessed using 132,869 single nucleotide polymorphism (SNP) markers identified by specific length amplified fragment-sequencing (SLAF-seq). Population structure and principal component analysis permitted the accessions to be categorized into eight groups. The genetic diversity and population differentiation of the eight groups were evaluated using the characterized SNPs. Analysis of molecular variance showed that the variation among eight inferred groups was higher than that within groups, while a relatively small variance was found among the two morphological types and 16 collection regions. Further, a core germplasm set comprising 41 taro accessions that maintained the genetic diversity of the entire collection was developed based on the genotype. This research is expected to be valuable for genetic characterization, germplasm conservation, and breeding of taro.


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Zulfahmi Zulfahmi ◽  
Parjanto Parjanto ◽  
Edi Purwanto ◽  
Ahmad Yunus

Abstract. Zulfahmi, Parjanto, Purwanto E, Yunus A. 2021. Genetic diversity and population structure of Eurycoma apiculata in Eastern Sumatra, Indonesia. Biodiversitas 22: 4431-4439. Information on genetic variation within and among populations of Eurycoma apiculata plants is important to develop strategies for their conservation, sustainable use, and genetic improvement. To date, no information on genetic variation within and among populations of the E. apiculata has been reported. This study aims to assess genetic diversity within and among populations of E. apiculata based on RAPD markers, and to determine populations to collect E. apiculata genetic material for conservation and breeding programs. Young leaves of E. apiculata were collected from six natural populations. Fifteen RAPD primers were used to assess the genetic diversity of each population. The data obtained were analyzed with POPGEN and Arlequin software. The amplification results of 15 selected primers produced 3-16 loci with all primers 100% polymorphic. At the species level, the mean allele per locus (Na), number of effective alleles (Ne), percentage of polymorphic loci (PPL), Nei’s gene diversity index (He) and Shannon information index (I) were 2.000, 1.244, 100%, 0.167, and 0.286, respectively. At the population level, the mean values for Na, Ne, PPL, He and I were 1.393, 1.312, 39.27%, 0.119, and 0.186, respectively. The highest value of gene diversity within population (He) was found in the Lingga-1 population and the lowest value was found in the Rumbio population. The value of genetic differentiation among populations (GST) of E. apiculata is 0.284, consistent with the results of the AMOVA analysis which found that genetic variation among populations was 23.14%, indicates that the genetic variation of E. apiculata was more stored within populations than among populations. The gene flow (Nm) value of E. apiculata was 1.259 migrants per generation among populations. The Nm value of this species was high category, and could inhibit genetic differentiation among populations. The clustering of E. apiculata population based on the UPGMA dendrogram and PCA was inconsistent with its geographic distribution, reflecting the possibility that genes migration occurred between islands in the past. The main finding of this study was the genetic variation of the E. apiculata mostly stored within the population. Therefore, the population with the highest genetic diversity is a priority for in-situ conservation, and collection of E. apiculata genetic material for ex-situ conservation and breeding programs should be carried out minimum from Lingga-1 and Pokomo populations.


2019 ◽  
Author(s):  
Aman Agrawal ◽  
Alec M. Chiu ◽  
Minh Le ◽  
Eran Halperin ◽  
Sriram Sankararaman

AbstractPrincipal component analysis (PCA) is a key tool for understanding population structure and controlling for population stratification in genome-wide association studies (GWAS). With the advent of large-scale datasets of genetic variation, there is a need for methods that can compute principal components (PCs) with scalable computational and memory requirements. We present ProPCA, a highly scalable method based on a probabilistic generative model, which computes the top PCs on genetic variation data efficiently. We applied ProPCA to compute the top five PCs on genotype data from the UK Biobank, consisting of 488,363 individuals and 146,671 SNPs, in less than thirty minutes. Leveraging the population structure inferred by ProPCA within the White British individuals in the UK Biobank, we scanned for SNPs that are not well-explained by the PCs to identify several novel genome-wide signals of recent putative selection including missense mutations in RPGRIP1L and TLR4.Author SummaryPrincipal component analysis is a commonly used technique for understanding population structure and genetic variation. With the advent of large-scale datasets that contain the genetic information of hundreds of thousands of individuals, there is a need for methods that can compute principal components (PCs) with scalable computational and memory requirements. In this study, we present ProPCA, a highly scalable statistical method to compute genetic PCs efficiently. We systematically evaluate the accuracy and robustness of our method on large-scale simulated data and apply it to the UK Biobank. Leveraging the population structure inferred by ProPCA within the White British individuals in the UK Biobank, we identify several novel signals of putative recent selection.


2020 ◽  
Vol 13 (3) ◽  
pp. 341-353
Author(s):  
Yuting Lin ◽  
Achyut Kumar Banerjee ◽  
Haidan Wu ◽  
Fengxiao Tan ◽  
Hui Feng ◽  
...  

Abstract Aims Pluchea indica is a mangrove-associate species, known for its medicinal properties in its native range and being invasive in part of its introduced range. This study aimed to assess geographic distribution of genetic variation of this species across its distribution range, identify the factors influencing its genetic structure and use this information to suggest conservation and management strategies in its native and introduced ranges, respectively. Methods We assessed the genetic diversity and population structure of 348 individuals from 31 populations across its native (Asia) and introduced (USA) ranges for 15 nuclear microsatellite loci. The spatial pattern of genetic variation was investigated at both large and regional spatial scales with the hypothesis that geographic distance and natural geographic barriers would influence the population structure with varying levels of differentiation across spatial scales. Important Findings We found relatively high genetic diversity at the population level and pronounced genetic differentiation in P. indica, as compared with the genetic diversity parameters of mangroves and mangrove associates in this region. Most of the populations showed heterozygote deficiency, primarily due to inbreeding and impediment of gene flow. Analysis of population structures at large spatial scale revealed the presence of two major clusters across the species’ natural range separating populations in China from those in Indonesia, Malaysia, Singapore, Thailand, Cambodia and Philippines, and that the USA population might have been introduced from the population cluster in China. Genetic differentiation between populations was also observed at the regional scale. A large number of populations showed evidence of genetic bottleneck, thereby emphasizing the risk of local extinction. Based on these findings, our study recommends in situ conservation strategies, such as to prioritize populations for conservation actions and to maintain genetic diversity.


2020 ◽  
Vol 21 (5) ◽  
pp. 927-939
Author(s):  
M. Crotti ◽  
C. E. Adams ◽  
E. C. Etheridge ◽  
C. W. Bean ◽  
A. R. D. Gowans ◽  
...  

Abstract The European whitefish Coregonus lavaretus complex represents one of the most diverse radiations within salmonids, with extreme morphological and genetic differentiation across its range. Such variation has led to the assignment of many populations to separate species. In Great Britain, the seven native populations of C. lavaretus (two in Scotland, four in England, one in Wales) were previously classified into three species, and recent taxonomic revision resurrected the previous nomenclature. Here we used a dataset of 15 microsatellites to: (1) investigate the genetic diversity of British populations, (2) assess the level of population structure and the relationships between British populations. Genetic diversity was highest in Welsh (HO = 0.50, AR = 5.29), intermediate in English (HO = 0.41–0.50, AR = 2.83–3.88), and lowest in Scottish populations (HO = 0.28–0.35, AR = 2.56–3.04). Population structure analyses indicated high genetic differentiation (global FST = 0.388) between all populations but for the two Scottish populations (FST = 0.063) and two English populations (FST = 0.038). Principal component analysis and molecular ANOVA revealed separation between Scottish, English, and Welsh populations, with the Scottish populations being the most diverged. We argue that the data presented here are not sufficient to support a separation of the British European whitefish populations into three separate species, but support the delineation of different ESUs for these populations.


2021 ◽  
Vol 7 (10) ◽  
pp. 820
Author(s):  
Gezahegne Getaneh ◽  
Tadele Tefera ◽  
Fikre Lemessa ◽  
Seid Ahmed ◽  
Tarekegn Fite ◽  
...  

Ascochyta blight, also known as chickpea blight, which is caused by the fungal pathogen, Didymella rabiei, is an important disease affecting chickpea (Cicer arietinum L.) in many countries. We studied the genetic diversity and population structure of 96 D. rabiei isolates collected from three geographic populations in Ethiopia using simple sequence repeat (SSR) markers. We confirmed the genetic identity of 89 of the D. rabiei isolates by sequencing their rRNA internal transcribed spacer region genes. The chickpea blight pathogen isolates were genetically diverse, with a total of 51 alleles identified across 6 polymorphic SSR loci, which varied from 3 to 18 (average 8.5) alleles per SSR marker. The observed heterozygosity and expected heterozygosity ranged from 0.01 to 0.92 and 0.19 to 0.86, respectively. The mean polymorphic information content value of the D. rabiei populations was 0.58, with a mean gene diversity of 0.61 among loci. Gene flow (Nm = number of migrants) for the three populations of D. rabiei isolates ranged from 1.51 to 24.10 (average 6.2) migrants/cluster. However, the genetic variation between the D. rabiei populations was small (8%), with most of the variation occurring within populations (92%). Principal component analysis to visualize genetic variation showed that the D. rabiei isolates obtained from most of the chickpea samples formed roughly three groups on a two-dimensional coordinate plane. Similarly, the clustering of individuals into populations based on multi-locus genotypes (using Clumpak) grouped isolates into three clusters but with individual isolate admixtures. Hence, no clear geographic origin-based structuring of populations could be identified. To our knowledge, this is the first report of D. rabiei diversity in Ethiopia. Virulence studies should be conducted to develop chickpea varieties that are resistant to more aggressive pathogen populations.


Sign in / Sign up

Export Citation Format

Share Document