scholarly journals Genetic diversity and population structure of Eurycoma apiculata in Eastern Sumatra, Indonesia

2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Zulfahmi Zulfahmi ◽  
Parjanto Parjanto ◽  
Edi Purwanto ◽  
Ahmad Yunus

Abstract. Zulfahmi, Parjanto, Purwanto E, Yunus A. 2021. Genetic diversity and population structure of Eurycoma apiculata in Eastern Sumatra, Indonesia. Biodiversitas 22: 4431-4439. Information on genetic variation within and among populations of Eurycoma apiculata plants is important to develop strategies for their conservation, sustainable use, and genetic improvement. To date, no information on genetic variation within and among populations of the E. apiculata has been reported. This study aims to assess genetic diversity within and among populations of E. apiculata based on RAPD markers, and to determine populations to collect E. apiculata genetic material for conservation and breeding programs. Young leaves of E. apiculata were collected from six natural populations. Fifteen RAPD primers were used to assess the genetic diversity of each population. The data obtained were analyzed with POPGEN and Arlequin software. The amplification results of 15 selected primers produced 3-16 loci with all primers 100% polymorphic. At the species level, the mean allele per locus (Na), number of effective alleles (Ne), percentage of polymorphic loci (PPL), Nei’s gene diversity index (He) and Shannon information index (I) were 2.000, 1.244, 100%, 0.167, and 0.286, respectively. At the population level, the mean values for Na, Ne, PPL, He and I were 1.393, 1.312, 39.27%, 0.119, and 0.186, respectively. The highest value of gene diversity within population (He) was found in the Lingga-1 population and the lowest value was found in the Rumbio population. The value of genetic differentiation among populations (GST) of E. apiculata is 0.284, consistent with the results of the AMOVA analysis which found that genetic variation among populations was 23.14%, indicates that the genetic variation of E. apiculata was more stored within populations than among populations. The gene flow (Nm) value of E. apiculata was 1.259 migrants per generation among populations. The Nm value of this species was high category, and could inhibit genetic differentiation among populations. The clustering of E. apiculata population based on the UPGMA dendrogram and PCA was inconsistent with its geographic distribution, reflecting the possibility that genes migration occurred between islands in the past. The main finding of this study was the genetic variation of the E. apiculata mostly stored within the population. Therefore, the population with the highest genetic diversity is a priority for in-situ conservation, and collection of E. apiculata genetic material for ex-situ conservation and breeding programs should be carried out minimum from Lingga-1 and Pokomo populations.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mulatu Geleta ◽  
Isabel Herrera ◽  
Arnulfo Monzón ◽  
Tomas Bryngelsson

Coffea arabicaL. (arabica coffee), the only tetraploid species in the genusCoffea, represents the majority of the world’s coffee production and has a significant contribution to Nicaragua’s economy. The present paper was conducted to determine the genetic diversity of arabica coffee in Nicaragua for its conservation and breeding values. Twenty-six populations that represent eight varieties in Nicaragua were investigated using simple sequence repeat (SSR) markers. A total of 24 alleles were obtained from the 12 loci investigated across 260 individual plants. The total Nei’s gene diversity (HT) and the within-population gene diversity (HS) were 0.35 and 0.29, respectively, which is comparable with that previously reported from other countries and regions. Among the varieties, the highest diversity was recorded in the variety Catimor. Analysis of variance (AMOVA) revealed that about 87% of the total genetic variation was found within populations and the remaining 13% differentiate the populations (FST=0.13;P<0.001). The variation among the varieties was also significant. The genetic variation in Nicaraguan coffee is significant enough to be used in the breeding programs, and most of this variation can be conserved throughex situconservation of a low number of populations from each variety.


Botany ◽  
2013 ◽  
Vol 91 (10) ◽  
pp. 653-661 ◽  
Author(s):  
Anochar Kaewwongwal ◽  
Arunee Jetsadu ◽  
Prakit Somta ◽  
Sompong Chankaew ◽  
Peerasak Srinives

The objective of this research was to determine the genetic diversity and population structure of natural populations of two rare wild species of Asian Vigna (Phaseoleae, Fabaceae), Vigna exilis Tateishi & Maxted and Vigna grandiflora (Prain) Tateishi & Maxted, from Thailand. Employing 21 simple sequence repeat markers, 107 and 85 individuals from seven and five natural populations of V. exilis and V. grandiflora, respectively, were analyzed. In total, the markers detected 196 alleles for V. exilis and 219 alleles for V. grandiflora. Vigna exilis populations showed lower average values in number of alleles, allelic richness, observed heterozygosity, gene diversity, and outcrossing rate than V. grandiflora populations, namely 58.00% versus 114.60%, 51.96% versus 74.80%, 0.02% versus 0.18%, 0.40% versus 0.66%, and 3.24% versus 17.41%, respectively. Pairwise FST among populations demonstrated that V. exilis was much more differentiated than V. grandiflora. Analysis of molecular variance revealed that 41.83% and 15.06% of total variation resided among the populations of V. exilis and V. grandiflora, respectively. Seven and two genetic clusters were detected for V. grandiflora and V. exilis by STRUCTURE analysis. Our findings suggest that different strategies are required for in situ conservation of the two species. All V. exilis populations, or as many as possible, should be conserved to protect genetic resources of this species, while a few V. grandiflora populations can capture the majority of its genetic variation.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Salvatore Bordonaro ◽  
Anna Maria Guastella ◽  
Andrea Criscione ◽  
Antonio Zuccaro ◽  
Donata Marletta

The genetic variability of Pantesco and other two Sicilian autochthonous donkey breeds (Ragusano and Grigio Siciliano) was assessed using a set of 14 microsatellites. The main goals were to describe the current differentiation among the breeds and to provide genetic information useful to safeguard the Pantesco breed as well as to manage Ragusano and Grigio Siciliano. In the whole sample, that included 108 donkeys representative of the three populations, a total of 85 alleles were detected. The mean number of alleles was lower in Pantesco (3.7), than in Grigio Siciliano and Ragusano (4.4 and 5.9, resp.). The three breeds showed a quite low level of gene diversity (He) ranging from 0.471 in Pantesco to 0.589 in Grigio. The overall genetic differentiation index (Fst) was quite high; more than 10% of the diversity was found among breeds. Reynolds’ () genetic distances, correspondence, and population structure analysis reproduced the same picture, revealing that, (a) Pantesco breed is the most differentiated in the context of the Sicilian indigenous breeds, (b) within Ragusano breed, two well-defined subgroups were observed. This information is worth of further investigation in order to provide suitable data for conservation strategies.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Yanwen Deng ◽  
Tingting Liu ◽  
Yuqing Xie ◽  
Yaqing Wei ◽  
Zicai Xie ◽  
...  

Research Highlights: This study is the first to examine the genetic diversity of Michelia shiluensis (Magnoliaceae). High genetic diversity and low differentiation were detected in this species. Based on these results, we discuss feasible protection measures to provide a basis for the conservation and utilization of M. shiluensis. Background and Objectives: Michelia shiluensis is distributed in Hainan and Guangdong province, China. Due to human disturbance, the population has decreased sharply, and there is thus an urgent need to evaluate genetic variation within this species in order to identify an optimal conservation strategy. Materials and Methods: In this study, we used eight nuclear single sequence repeat (nSSR) markers and two chloroplast DNA (cpDNA) markers to assess the genetic diversity, population structure, and dynamics of 78 samples collected from six populations. Results: The results showed that the average observed heterozygosity (Ho), expected heterozygosity (He), and percentage of polymorphic loci (PPL) from nSSR markers in each population of M. shiluensis were 0.686, 0.718, and 97.92%, respectively. For cpDNA markers, the overall haplotype diversity (Hd) was 0.674, and the nucleotide diversity was 0.220. Analysis of markers showed that the genetic variation between populations was much lower based on nSSR than on cpDNA (10.18% and 77.56%, respectively, based on an analysis of molecular variance (AMOVA)). Analysis of the population structure based on the two markers shows that one of the populations (DL) is very different from the other five. Conclusions: High genetic diversity and low population differentiation of M. shiluensis might be the result of rich ancestral genetic variation. The current decline in population may therefore be due to human disturbance rather than to inbreeding or genetic drift. Management and conservation strategies should focus on maintaining the genetic diversity in situ, and on the cultivation of seedlings ex-situ for transplanting back to their original habitat.


2001 ◽  
Vol 79 (4) ◽  
pp. 457-463 ◽  
Author(s):  
Man Kyu Huh

Genetic diversity and population structure of 22 Carex humilis var. nana Ohwi (Cyperaceae) populations in Korea were determined using genetic variation at 23 allozyme loci. This is a long-lived herbaceous species with a widespread distribution in eastern Asia. The 12 enzymes revealed 23 putative loci, of which 11 were polymorphic (47.8%). Genetic diversity at the varietal level and at the population level was 0.131 and 0.118, respectively. Total genetic diversity (HT = 0.274) and within population genetic diversity (HS = 0.256) were high, whereas the extent of the population divergence was relatively low (GST = 0.068). An indirect estimate of the number of migrants per generation (Nm = 3.42) indicated that gene flow was high among Korean populations. Wide geographic ranges, perennial herbaceous nature, and the persistence of multiple generations are associated with the high level of genetic variation. A distinct difference between Asian and North American Carex is shown in the proportion of genetic variation (GST) (p < 0.001). The mean GST of Asian Carex was estimated as 0.056; thus, only 5.6% of genetic variability was distributed among populations, whereas the mean GST of North American Carex was estimated as 19.5% (3.5 times higher). It is probable that the geographical distance between population pairs and presence or absence of glacial history may play roles in the substantial difference between both groups.Key words: Carex humilis var. nana, genetic diversity, population structure.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Christine Ouinsavi ◽  
Nestor Sokpon ◽  
Damase P. Khasa

To accurately estimate the genetic diversity and population structure for improved conservation planning ofMilicia excelsatree, 212 individuals from twelve population samples covering the species' range in Benin were surveyed at seven specific microsatellite DNA loci. All loci were variable, with the mean number of alleles per locus ranging from 5.86 to 7.69. Considerable genetic variability was detected for all populations at the seven loci (AR=4.60;HE=0.811). Moderate but statistically significant genetic differentiation was found among populations considering bothFST(0.112) andRST(0.342). All of the populations showed heterozygosity deficits in test of Hardy-Weinberg Equilibrium and significantly positiveFISvalues due to inbreeding occurring in the species. PairwiseFSTvalues were positively and significantly correlated with geographical distances (r=0.432;P=.007, Mantel's test) indicating that populations are differentiated by “isolation by distance.” Bayesian analysis of population structure showed division of the genetic variation into four clusters revealing the existence of heterogeneity in population genetic structure. Altogether, these results indicate that genetic variation inMilicia excelsais geographically structured. Information gained from this study also emphasized the need for in situ conservation of the relict populations and establishment of gene flow corridors through agroforestry systems for interconnecting these remnant populations.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maroua Ouaja ◽  
Bochra A. Bahri ◽  
Lamia Aouini ◽  
Sahbi Ferjaoui ◽  
Maher Medini ◽  
...  

Abstract Background Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. Results Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H′) of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H′ = 0.98), spike shape (H′ = 0.86), grain size (H′ = 0.94), grain shape (H′ = 0.87) and grain color (H′ = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. Conclusion Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.


2009 ◽  
Vol 58 (1-6) ◽  
pp. 79-85 ◽  
Author(s):  
G. H. Huang ◽  
C. L. Zhong ◽  
X. H. Su ◽  
Y. Zhang ◽  
K. Pinyopusarerk ◽  
...  

AbstractCasuarina equisetifolia is an important tree species in tropical/subtropical zones of Asia, the Pacific and Africa. In this study, 220 individuals from seven native provenances and eleven introduced provenances of C. equisetifolia were analyzed to assess the genetic variation and structure using amplified fragment length polymorphism (AFLP) markers. A total of 465 bands were obtained by eight primer pairs, among which 153 were polymorphic. The mean NEI’s gene diversity H = 0.2113 calculated for 18 provenances and the total gene diversity HT = 0.4065 calculated for native provenances suggested abundant variation within provenances and species. High genetic divergence coefficient (GST = 0.4737) and low gene flow (Nm = 0.5555) detected among native provenances suggesting high differentiation of C. equisetifolia. An AMOVA analysis for native provenances revealed a high proportion (46.07%) of the total genetic variation distributed among provenances. The UPGMA clustering (r = 0.8028) and the Mantel test (r = 0.0716) for native provenances showed there was no correlation among genetic relationships and geographical distribution. The genetic information provided important implications for the future conservation and breeding programs of C. equisetifolia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kassa Semagn ◽  
Muhammad Iqbal ◽  
Nikolaos Alachiotis ◽  
Amidou N’Diaye ◽  
Curtis Pozniak ◽  
...  

AbstractPrevious molecular characterization studies conducted in Canadian wheat cultivars shed some light on the impact of plant breeding on genetic diversity, but the number of varieties and markers used was small. Here, we used 28,798 markers of the wheat 90K single nucleotide polymorphisms to (a) assess the extent of genetic diversity, relationship, population structure, and divergence among 174 historical and modern Canadian spring wheat varieties registered from 1905 to 2018 and 22 unregistered lines (hereinafter referred to as cultivars), and (b) identify genomic regions that had undergone selection. About 91% of the pairs of cultivars differed by 20–40% of the scored alleles, but only 7% of the pairs had kinship coefficients of < 0.250, suggesting the presence of a high proportion of redundancy in allelic composition. Although the 196 cultivars represented eight wheat classes, our results from phylogenetic, principal component, and the model-based population structure analyses revealed three groups, with no clear structure among most wheat classes, breeding programs, and breeding periods. FST statistics computed among different categorical variables showed little genetic differentiation (< 0.05) among breeding periods and breeding programs, but a diverse level of genetic differentiation among wheat classes and predicted groups. Diversity indices were the highest and lowest among cultivars registered from 1970 to 1980 and from 2011 to 2018, respectively. Using two outlier detection methods, we identified from 524 to 2314 SNPs and 41 selective sweeps of which some are close to genes with known phenotype, including plant height, photoperiodism, vernalization, gluten strength, and disease resistance.


2020 ◽  
Vol 13 (3) ◽  
pp. 341-353
Author(s):  
Yuting Lin ◽  
Achyut Kumar Banerjee ◽  
Haidan Wu ◽  
Fengxiao Tan ◽  
Hui Feng ◽  
...  

Abstract Aims Pluchea indica is a mangrove-associate species, known for its medicinal properties in its native range and being invasive in part of its introduced range. This study aimed to assess geographic distribution of genetic variation of this species across its distribution range, identify the factors influencing its genetic structure and use this information to suggest conservation and management strategies in its native and introduced ranges, respectively. Methods We assessed the genetic diversity and population structure of 348 individuals from 31 populations across its native (Asia) and introduced (USA) ranges for 15 nuclear microsatellite loci. The spatial pattern of genetic variation was investigated at both large and regional spatial scales with the hypothesis that geographic distance and natural geographic barriers would influence the population structure with varying levels of differentiation across spatial scales. Important Findings We found relatively high genetic diversity at the population level and pronounced genetic differentiation in P. indica, as compared with the genetic diversity parameters of mangroves and mangrove associates in this region. Most of the populations showed heterozygote deficiency, primarily due to inbreeding and impediment of gene flow. Analysis of population structures at large spatial scale revealed the presence of two major clusters across the species’ natural range separating populations in China from those in Indonesia, Malaysia, Singapore, Thailand, Cambodia and Philippines, and that the USA population might have been introduced from the population cluster in China. Genetic differentiation between populations was also observed at the regional scale. A large number of populations showed evidence of genetic bottleneck, thereby emphasizing the risk of local extinction. Based on these findings, our study recommends in situ conservation strategies, such as to prioritize populations for conservation actions and to maintain genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document