scholarly journals Coactivation index of children with congenital upper limb reduction deficiencies before and after using a wrist-driven 3D printed partial hand prosthesis

Author(s):  
Jorge M. Zuniga ◽  
Katsavelis Dimitrios ◽  
Jean L. Peck ◽  
Rakesh Srivastava ◽  
James E. Pierce ◽  
...  
2021 ◽  
Author(s):  
Jessica Lukaszek ◽  
Jordan Borrell ◽  
Claudia Cortes ◽  
Jorge Zuniga

Abstract Purpose: Current training interventions assessing pediatric functional motor skills do not account for children with upper limb reductions who utilize a prosthetic device. It was hypothesized that a newly created 8-week Home Intervention program will result in significant improvements in gross manual dexterity, bimanual coordination, and the functional activities performed during the program. It was also hypothesized that the newly developed Prosthesis Measurement of Independent Function (PMIF) score will reflect the Home Intervention performance improvements. Methods: Five pediatric participants (ages 5-19 years) with congenital upper limb reductions were fitted with a 3D printed upper extremity prosthesis for their affected limb. Participants then completed the 8-week Home Intervention which included Training activities completed 2x/week for 8 weeks and Non-Training activities completed only at week 1 and week 8. Participant’s times were recorded along with each participant receiving a PMIF score ranging from 0 = unable to complete activity, to 7 = complete independence with activity completion. Results: Results showed a decrease in overall averaged activity times amongst all activities. For all activities performed, individual averaged time decreased with the exception of Ball Play which increased over the 8 week intervention period. There was significant interaction for home intervention performance with F = 2.904 (p = 0.003). All participants increased their PMIF scores to 7 (complete independence) at the end of the 8 week intervention period. Conclusion: Decreases in time averages and increases in PMIF scores quantitatively showed that the home intervention program facilitate improvements in function and independence.


2019 ◽  
pp. 121-131

Introduction: Breast cancer is the most common type of cancer among women in Brazil and in the worl. The surgical treatment procedure may cause severe morbidity in the upper limb homolateral to surgery, including the reduction of the range of motion, with consequent impairment of function. A physiotherapeutic approach has an important role in the recover range of motion and the functionality of these women, guaranteeing the occupational, domestestic, familiar and conjugated activities, and, in this way, also improving the quality of life. Objectives: To analyse chances in the shoulder's range of motion and the functional capacity of the upper limbs, promoted by the deep running procedure in women with late postoperative mastectomy. Methods: All the patients were submitted to an evaluation in the beginning and end of the treatment, including: goniometry of flexion, extension, abduction, adduction, internal and external rotation of the shoulder joint; and function capacity analysis in activities that involve the upper members by DASH questionnaire. The treatment protocol includes twelve sessions of deep running, realized twice a week, in deep pool, for 20-minute during six weeks. Results: Were submitted to treatment a total of 4 patients. Despite the improvement in the numerical values, statistically significant differences were not found on the range of movements and in the functional capacity of upper members before and after the deep running sessions in post-mastectomy women. Conclusion: Deep running had effects on the numerical values of range of movement and upper limb functionality in women in the late postoperative period of the mastectomy procedure, but without statistically significant differences.


Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


2021 ◽  
pp. 194589242110035
Author(s):  
Muhamed A. Masalha ◽  
Kyle K. VanKoevering ◽  
Omar S. Latif ◽  
Allison R. Powell ◽  
Ashley Zhang ◽  
...  

Background Acquiring proficiency for the repair of a cerebrospinal fluid (CSF) leak is challenging in great part due to its relative rarity, which offers a finite number of training opportunities. Objective The purpose of this study was to evaluates the use of a 3-dimensional (3D) printed, anatomically accurate model to simulate CSF leak closure. Methods Volunteer participants completed two simulation sessions. Questionnaires to assess their professional qualifications and a standardized 5-point Likert scale to estimate the level of confidence, were completed before and after each session. Participants were also queried on the overall educational utility of the simulation. Results Thirteen otolaryngologists and 11 neurosurgeons, met the inclusion criteria. A successful repair of the CSF leak was achieved by 20/24 (83.33%), and 24/24 (100%) during the first and second simulation sessions respectively (average time 04:04 ± 1.39 and 02:10 ± 01:11). Time-to-close-the-CSF-leak during the second session was significantly shorter than the first (p < 0.001). Confidence scores increased across the training sessions (3.3 ± 1.0, before the simulation, 3.7 ± 0.6 after the first simulation, and 4.2 ± 0.4 after the second simulation; p < 0.001). All participants reported an increase in confidence and believed that the model represented a valuable training tool. Conclusions Despite significant differences with varying clinical scenarios, 3D printed models for cerebrospinal leak repair offer a feasible simulation for the training of residents and novice surgeons outside the constrictions of a clinical environment.


1970 ◽  
Vol 26 (2) ◽  
pp. 253-262 ◽  
Author(s):  
Herbert G. Vaughan ◽  
Elliott G. Gross ◽  
Joseph Bossom

2016 ◽  
Vol 29 (2) ◽  
pp. 287-293 ◽  
Author(s):  
Dreyzialle Vila Nova Mota ◽  
André Luís Ferreira de Meireles ◽  
Marcelo Tavares Viana ◽  
Rita de Cássia de Albuquerque Almeida

Abstract Introduction: Individuals with stroke sequelae present changes in the postural alignment and muscle strength associated with hemiplegia or hemiparesis. Mirror therapy is a technique that aims to improve the motor function of the paretic limb. Objective: The aim of this study was to evaluate the effect of mirror therapy, associated with conventional physiotherapy, for range of motion (ROM), degree of spasticity of the affected upper limb, and the level of independence in the activities of daily living (ADL) of chronic patients after stroke. Methods: This was a quasi-experimental (before and after) study. The study included ten stroke survivors undertaking physiotherapy and presenting with upper limb paresis. The following gauges were used for the present study: goniometry, the Modified Ashworth Scale, Fugl-Meyer and Barthel Index. Fifteen sessions were performed, each lasting 30 minutes, consisting of stretching of the flexor and extensor muscles of the wrist and elbow, pronators and supinators, followed by mirror therapy with gradual functional exercises. Results: Improvement was observed in all aspects studied, however with significant differences for ROM wrist extension (p = 0.04) and forearm supination (p = 0.03) Conclusion: It can be concluded that mirror therapy contributed to the participants' good performance in the aspects studied, mainly in relation to ROM of the affected upper limb.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3588
Author(s):  
Yoshiki Ishida ◽  
Yukinori Kuwajima ◽  
Cliff Lee ◽  
Kaho Ogawa ◽  
John D. Da Silva ◽  
...  

The goal of our study is to launch magnetic force-driven orthodontics. This continuous study investigated the influence of magnet position on tipping and bodily tooth movement, using 3D printing technology and digital analysis. Orthodontic typodont models (TMs) for space-closure were 3D printed to mimic maxillary central incisors. Nd-Fe-B magnets were placed in the middle third (Model-M), and the cervical third (Model-C), of the tooth. TMs, before and after movement, were digitally scanned and superimposed. The 3D digital coordinates (X, Y, and Z axes), and rotations (yaw, pitch, and roll) of the tooth crown and root, were calculated and compared between the two magnet position settings. Model-M showed higher rates of movement, but more rotation than Model-C (p < 0.01). The root apex of Model-M moved in the opposite direction of the crown (R = −0.29), indicating tipping movement. In contrast, the crown and root apex moved in the same direction (R = 0.56) in Model-C, indicating bodily movement. These patterns were confirmed in a typodont model of a moderate crowding case. The results validated that modifying the magnet position increased the amount of bodily tooth movement, and decreased rotation/tipping in an ex vivo setting.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Katarzyna Kisiel-Sajewicz ◽  
Jarosław Marusiak ◽  
Mónica Rojas-Martínez ◽  
Damian Janecki ◽  
Sławomir Chomiak ◽  
...  

Abstract Background The aim of this study was to determine whether computer-aided training (CAT) of motor tasks would increase muscle activity and change its spatial distribution in a patient with a bilateral upper-limb congenital transverse deficiency. We believe that our study makes a significant contribution to the literature because it demonstrates the usefulness of CAT in promoting the neuromuscular adaptation in people with congenital limb deficiencies and altered body image. Case presentation The patient with bilateral upper-limb congenital transverse deficiency and the healthy control subject performed 12 weeks of the CAT. The subject’s task was to imagine reaching and grasping a book with the hand. Subjects were provided a visual animation of that movement and sensory feedback to facilitate the mental engagement to accomplish the task. High-density electromyography (HD-EMG; 64-electrode) were collected from the trapezius muscle during a shrug isometric contraction before and after 4, 8, 12 weeks of the training. After training, we observed in our patient changes in the spatial distribution of the activation, and the increased average intensity of the EMG maps and maximal force. Conclusions These results, although from only one patient, suggest that mental training supported by computer-generated visual and sensory stimuli leads to beneficial changes in muscle strength and activity. The increased muscle activation and changed spatial distribution of the EMG activity after mental training may indicate the training-induced functional plasticity of the motor activation strategy within the trapezius muscle in individual with bilateral upper-limb congenital transverse deficiency. Marked changes in spatial distribution during the submaximal contraction in the patient after training could be associated with changes of the neural drive to the muscle, which corresponds with specific (unfamiliar for patient) motor task. These findings are relevant to neuromuscular functional rehabilitation in patients with a bilateral upper-limb congenital transverse deficiency especially before and after upper limb transplantation and to development of the EMG based prostheses.


Sign in / Sign up

Export Citation Format

Share Document