scholarly journals Cerebrospinal fluid drainage kinetics across the cribriform plate are reduced with aging

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Molly Brady ◽  
Akib Rahman ◽  
Abigail Combs ◽  
Chethana Venkatraman ◽  
R. Tristan Kasper ◽  
...  

Abstract Background Continuous circulation and drainage of cerebrospinal fluid (CSF) are essential for the elimination of CSF-borne metabolic products and neuronal function. While multiple CSF drainage pathways have been identified, the significance of each to normal drainage and whether there are differential changes at CSF outflow regions in the aging brain are unclear. Methods Dynamic in vivo imaging of near infrared fluorescently-labeled albumin was used to simultaneously visualize the flow of CSF at outflow regions on the dorsal side (transcranial and -spinal) of the central nervous system. This was followed by kinetic analysis, which included the elimination rate constants for these regions. In addition, tracer distribution in ex vivo tissues were assessed, including the nasal/cribriform region, dorsal and ventral surfaces of the brain, spinal cord, cranial dura, skull base, optic and trigeminal nerves and cervical lymph nodes. Results Based on the in vivo data, there was evidence of CSF elimination, as determined by the rate of clearance, from the nasal route across the cribriform plate and spinal subarachnoid space, but not from the dorsal dural regions. Using ex vivo tissue samples, the presence of tracer was confirmed in the cribriform area and olfactory regions, around pial blood vessels, spinal subarachnoid space, spinal cord and cervical lymph nodes but not for the dorsal dura, skull base or the other cranial nerves. Also, ex vivo tissues showed retention of tracer along brain fissures and regions associated with cisterns on the brain surfaces, but not in the brain parenchyma. Aging reduced CSF elimination across the cribriform plate but not that from the spinal SAS nor retention on the brain surfaces. Conclusions Collectively, these data show that the main CSF outflow sites were the nasal region across the cribriform plate and from the spinal regions in mice. In young adult mice, the contribution of the nasal and cribriform route to outflow was much higher than from the spinal regions. In older mice, the contribution of the nasal route to CSF outflow was reduced significantly but not for the spinal routes. This kinetic approach may have significance in determining early changes in CSF drainage in neurological disorder, age-related cognitive decline and brain diseases.

2021 ◽  
Vol 14 ◽  
Author(s):  
Steven W. Bothwell ◽  
Daniel Omileke ◽  
Rebecca J. Hood ◽  
Debbie-Gai Pepperall ◽  
Sara Azarpeykan ◽  
...  

Oedema-independent intracranial pressure (ICP) rise peaks 20–22-h post-stroke in rats and may explain early neurological deterioration. Cerebrospinal fluid (CSF) volume changes may be involved. Cranial CSF clearance primarily occurs via the cervical lymphatics and movement into the spinal portion of the cranio-spinal compartment. We explored whether impaired CSF clearance at these sites could explain ICP rise after stroke. We recorded ICP at baseline and 18-h post-stroke, when we expect changes contributing to peak ICP to be present. CSF clearance was assessed in rats receiving photothrombotic stroke or sham surgery by intraventricular tracer infusion. Tracer concentration was quantified in the deep cervical lymph nodes ex vivo and tracer transit to the spinal subarachnoid space was imaged in vivo. ICP rose significantly from baseline to 18-h post-stroke in stroke vs. sham rats [median = 5 mmHg, interquartile range (IQR) = 0.1–9.43, n = 12, vs. −0.3 mmHg, IQR = −1.9–1.7, n = 10], p = 0.03. There was a bimodal distribution of rats with and without ICP rise. Tracer in the deep cervical lymph nodes was significantly lower in stroke with ICP rise (0 μg/mL, IQR = 0–0.11) and without ICP rise (0 μg/mL, IQR = 0–4.47) compared with sham rats (4.17 μg/mL, IQR = 0.74–8.51), p = 0.02. ICP rise was inversely correlated with faster CSF transit to the spinal subarachnoid space (R = −0.59, p = 0.006, Spearman’s correlation). These data suggest that reduced cranial clearance of CSF via cervical lymphatics may contribute to post-stroke ICP rise, partially compensated via increased spinal CSF outflow.


Author(s):  
L Ascari ◽  
C Stefanini ◽  
U Bertocchi ◽  
P Dario

This work presents the design and development of an integrated image-guided robot-assisted endoscopic system for the safe navigation within the spinal subarachnoid space, providing the surgeon with the direct vision of the structures (i.e. spinal cord, roots, vessels) and the possibility of performing some particularly useful operations, like local electrostimulation of nerve roots. The modelling, micro-fabrication, fluidic sustentation, and cable-based actuation system of a steerable tip for a multilumen flexible catheter is described; the hierarchical control system shared between the surgeon and the computer, and based on machine vision techniques and a simple but effective three-dimensional reconstruction is detailed. The Blind Expected Perception sensory-motor scheme is proposed in robot-assited endoscopy. Results from in vitro, ex vivo, and in vivo experiments show that the described model can accurately predict the shape of the catheter given the tension distribution on the cables, that the proposed actuation system can assure smooth and precise control of the catheter tip, that the fluidic sustentation of the catheter is essential in in vivo navigation, and that the proposed rear view mirror interface to show non-visible obstacles is appropriate; in conclusion, the results proved the validity of the proposed solution to develop an intrinsically safe robotic system for navigation and intervention in a narrow and challenging environment such as the spinal subarachnoid space.


2017 ◽  
Vol 131 (22) ◽  
pp. 2745-2752 ◽  
Author(s):  
Howard Dobson ◽  
Matthew MacGregor Sharp ◽  
Richard Cumpsty ◽  
Theodore P. Criswell ◽  
Tyler Wellman ◽  
...  

Although there are no conventional lymphatic vessels in the brain, fluid and solutes drain along basement membranes (BMs) of cerebral capillaries and arteries towards the subarachnoid space and cervical lymph nodes. Convective influx/glymphatic entry of the cerebrospinal fluid (CSF) into the brain parenchyma occurs along the pial-glial BMs of arteries. This project tested the hypotheses that pial-glial BM of arteries are thicker in the midbrain, allowing more glymphatic entry of CSF. The in vivo MRI and PET images were obtained from a 4.2-year-old dog, whereas the post-mortem electron microscopy was performed in a 12-year-old dog. We demonstrated a significant increase in the thickness of the pial-glial BM in the midbrain compared with the same BM in different regions of the brain and an increase in the convective influx of fluid from the subarachnoid space. These results are highly significant for the intrathecal drug delivery into the brain, indicating that the midbrain is better equipped for convective influx/glymphatic entry of the CSF.


Author(s):  
Bryn Martin ◽  
Philippe Reymond ◽  
Olivier Balédent ◽  
Jan Novy ◽  
Nikos Stergiopulos

A preliminary coupled 1-D model of the systemic arterial tree and cerebrospinal fluid (CSF) system was constructed. The systemic tree model includes arteries greater than 2 mm in diameter and a simplified spinal cord vasculature. Coupling of the arterial tree and CSF system is accomplished by a transfer function based on in vivo cerebral blood flow (CBF) and CSF pulsation measurements in 17 young healthy adults. A 1-D tube model of the CSF in the spinal subarachnoid space (SSS) is formed based on in vivo measurements and used to determine flow and pressure along the SSS. The pressure and flow results in the CSF and systemic arterial tree are qualitatively and quantitatively similar to in vivo measurements in healthy subjects. The relative arrival time of blood pulsations in the spinal cord and CSF in the SSS is impacted by CSF system compliance and geometry. With low CSF system compliance the CSF pulsations arrive around the spinal cord before arterial pulsations and vice versa. Overall, the preliminary results support that geometric and mechanical properties of the CSF and cardiovascular system have an important impact on the flow and pressure environment and accent the importance to obtain in vivo measurements to improve modeling capabilities.


2019 ◽  
Vol 216 (11) ◽  
pp. 2492-2502 ◽  
Author(s):  
Qiaoli Ma ◽  
Yann Decker ◽  
Andreas Müller ◽  
Benjamin V. Ineichen ◽  
Steven T. Proulx

The pathways of circulation and clearance of cerebrospinal fluid (CSF) in the spine have yet to be elucidated. We have recently shown with dynamic in vivo imaging that routes of outflow of CSF in mice occur along cranial nerves to extracranial lymphatic vessels. Here, we use near-infrared and magnetic resonance imaging to demonstrate the flow of CSF tracers within the spinal column and reveal the major spinal pathways for outflow to lymphatic vessels in mice. We found that after intraventricular injection, a spread of CSF tracers occurs within both the central canal and the spinal subarachnoid space toward the caudal end of the spine. Outflow of CSF tracers from the spinal subarachnoid space occurred predominantly from intravertebral regions of the sacral spine to lymphatic vessels, leading to sacral and iliac LNs. Clearance of CSF from the spine to lymphatic vessels may have significance for many conditions, including multiple sclerosis and spinal cord injury.


1997 ◽  
Vol 87 (5) ◽  
pp. 738-745 ◽  
Author(s):  
Kaoru Sakatani ◽  
Masaki Kashiwasake-Jibu ◽  
Yoshinori Taka ◽  
Shijie Wang ◽  
Huancong Zuo ◽  
...  

✓ The authors have developed a noninvasive optical method to image the subarachnoid space and cerebrospinal fluid pathways in vivo based on the near-infrared fluorescence of indocyanine green (ICG). The ICG was bound to purified lipoproteins (ICG—lipoprotein) and injected into the subarachnoid space of neonatal and adult rats. The ICG fluorescence was detected by a cooled charge-coupled device camera. After injection of ICG—lipoprotein into the cerebral subarachnoid space of the neonatal rat, ICG fluorescence was clearly detected at the injection site through the skull and skin. The ICG fluorescence was observed in the cerebellum and the lumbar spinal cord 1 and 8 hours postinjection, respectively. After injection of ICG—lipoprotein into the lumbar spinal subarachnoid space of an adult rat, ICG fluorescence was observed from the injection site to the thoracic levels along the spinal subarachnoid space. In addition, with the rat's head tilted downward, ICG fluorescence had extended to the cerebral subarachnoid space by 1 hour postinjection. The ICG fluorescence imaging of the cerebral subarachnoid space demonstrated an increase in fluorescence intensity around the lambdoid suture and the forebrain. On dissection of the rat brain the former location was identified as the supracerebellar cistern and the latter as the olfactory cistern. The results of this study are the first to demonstrate that an optical technique is applicable to imaging of the subarachnoid space and cerebrospinal fluid pathways in vivo. In addition, ICG—lipoprotein provides a sensitive optical tracer for imaging extravascular biological structures. Finally, ICG fluorescence imaging does not require an intricate imaging system because ICG is localized near the surface of the body.


2003 ◽  
Vol 125 (6) ◽  
pp. 857-863 ◽  
Author(s):  
P. W. Carpenter ◽  
K. Berkouk ◽  
A. D. Lucey

Our aim in this paper is to use a simple theoretical model of the intraspinal cerebrospinal-fluid system to investigate mechanisms proposed for the pathogenesis of syringomyelia. The model is based on an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. According to this model, the leading edge of a pressure pulse tends to steepen and form an elastic jump, as it propagates up the intraspinal cerebrospinal-fluid system. We show that when an elastic jump is incident on a stenosis of the spinal subarachnoid space, it reflects to form a transient, localized region of high pressure within the spinal cord that for a cough-induced pulse is estimated to be 50 to 70 mm Hg or more above the normal level in the spinal subarachnoid space. We propose this as a new mechanism whereby pressure pulses created by coughing or sneezing can generate syrinxes. We also use the same analysis to investigate Williams’ suck mechanism. Our results do not support his concept, nor, in cases where the stenosis is severe, the differential-pressure-propagation mechanism recently proposed by Greitz et al. Our analysis does provide some support for the piston mechanism recently proposed by Oldfield et al. and Heiss et al. For instance, it shows clearly how the spinal cord is compressed by the formation of elastic jumps over part of the cardiac cycle. What appears to be absent for this piston mechanism is any means whereby the elastic jumps can be focused (e.g., by reflecting from a stenosis) to form a transient, localized region of high pressure within the spinal cord. Thus it would seem to offer a mechanism for syrinx progression, but not for its formation.


Injury ◽  
2015 ◽  
Vol 46 (4) ◽  
pp. 634-637 ◽  
Author(s):  
Rebecca E. Franco-Bourland ◽  
Horacio J. Reyes-Alva ◽  
Alejandra Quintana-Armenta ◽  
Angelina Martinez-Cruz ◽  
Ignacio Madrazo ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1833
Author(s):  
Shannon Morgan McCabe ◽  
Ningning Zhao

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


2021 ◽  
Vol 4 (4) ◽  
pp. 551-565
Author(s):  
Ryan D Bitar ◽  
Jorge L Torres-Garza ◽  
Russel J Reiter ◽  
William T Phillips

The central nervous system was thought to lack a lymphatic drainage until the recent discovery of the neural glymphatic system.  This highly specialized waste disposal network includes classical lymphatic vessels in the dura that absorb fluid and metabolic by-products and debris from the underlying cerebrospinal fluid (CSF) in the subarachnoid space. The subarachnoid space is continuous with the Virchow-Robin peri-arterial and peri-vascular spaces which surround the arteries and veins that penetrate into the neural tissue, respectively.  The dural lymphatic vessels exit the cranial vault via an anterior and a posterior route and eventually drain into the deep cervical lymph nodes. Aided by the presence of aquaporin 4 on the perivascular endfeet of astrocytes, nutrients and other molecules enter the brain from peri-arterial spaces and form interstitial fluid (ISF) that baths neurons and glia before being released into peri-venous spaces.  Melatonin, a pineal-derived secretory product which is in much higher concentration in the CSF than in the blood, is believed to follow this route and to clear waste products such as amyloid-β from the interstitial space. The clearance of amyloid-β reportedly occurs especially during slow wave sleep which happens concurrently with highest CSF levels of melatonin.  Experimentally, exogenously-administered melatonin defers amyloid-β buildup in the brain of animals and causes its accumulation in the cervical lymph nodes. Clinically, with increased age CSF melatonin levels decrease markedly, co-incident with neurodegeneration and dementia.  Collectively, these findings suggest a potential association between the loss of melatonin, decreased glymphatic drainage and neurocognitive decline in the elderly.


Sign in / Sign up

Export Citation Format

Share Document