The perivascular pathways for influx of cerebrospinal fluid are most efficient in the midbrain

2017 ◽  
Vol 131 (22) ◽  
pp. 2745-2752 ◽  
Author(s):  
Howard Dobson ◽  
Matthew MacGregor Sharp ◽  
Richard Cumpsty ◽  
Theodore P. Criswell ◽  
Tyler Wellman ◽  
...  

Although there are no conventional lymphatic vessels in the brain, fluid and solutes drain along basement membranes (BMs) of cerebral capillaries and arteries towards the subarachnoid space and cervical lymph nodes. Convective influx/glymphatic entry of the cerebrospinal fluid (CSF) into the brain parenchyma occurs along the pial-glial BMs of arteries. This project tested the hypotheses that pial-glial BM of arteries are thicker in the midbrain, allowing more glymphatic entry of CSF. The in vivo MRI and PET images were obtained from a 4.2-year-old dog, whereas the post-mortem electron microscopy was performed in a 12-year-old dog. We demonstrated a significant increase in the thickness of the pial-glial BM in the midbrain compared with the same BM in different regions of the brain and an increase in the convective influx of fluid from the subarachnoid space. These results are highly significant for the intrathecal drug delivery into the brain, indicating that the midbrain is better equipped for convective influx/glymphatic entry of the CSF.

2021 ◽  
Vol 11 ◽  
Author(s):  
Nivedita Agarwal ◽  
Roxana Octavia Carare

The cerebral vasculature is made up of highly specialized structures that assure constant brain perfusion necessary to meet the very high demand for oxygen and glucose by neurons and glial cells. A dense, redundant network of arteries is spread over the entire pial surface from which penetrating arteries dive into the cortex to reach the neurovascular units. Besides providing blood to the brain parenchyma, cerebral arteries are key in the drainage of interstitial fluid (ISF) and solutes such as amyloid-beta. This occurs along the basement membranes surrounding vascular smooth muscle cells, toward leptomeningeal arteries and deep cervical lymph nodes. The dense microvasculature is made up of fine capillaries. Capillary walls contain pericytes that have contractile properties and are lined by a highly specialized blood–brain barrier that regulates the entry of solutes and ions and maintains the integrity of the composition of ISF. They are also important for the production of ISF. Capillaries drain into venules that course centrifugally toward the cortex to reach cortical veins and empty into dural venous sinuses. The walls of the venous sinuses are also home to meningeal lymphatic vessels that support the drainage of cerebrospinal fluid, although such pathways are still poorly understood. Damage to macro- and microvasculature will compromise cerebral perfusion, hamper the highly synchronized movement of neurofluids, and affect the drainage of waste products leading to neuronal and glial degeneration. This review will present vascular anatomy, their role in fluid dynamics, and a summary of how their dysfunction can lead to neurodegeneration.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Molly Brady ◽  
Akib Rahman ◽  
Abigail Combs ◽  
Chethana Venkatraman ◽  
R. Tristan Kasper ◽  
...  

Abstract Background Continuous circulation and drainage of cerebrospinal fluid (CSF) are essential for the elimination of CSF-borne metabolic products and neuronal function. While multiple CSF drainage pathways have been identified, the significance of each to normal drainage and whether there are differential changes at CSF outflow regions in the aging brain are unclear. Methods Dynamic in vivo imaging of near infrared fluorescently-labeled albumin was used to simultaneously visualize the flow of CSF at outflow regions on the dorsal side (transcranial and -spinal) of the central nervous system. This was followed by kinetic analysis, which included the elimination rate constants for these regions. In addition, tracer distribution in ex vivo tissues were assessed, including the nasal/cribriform region, dorsal and ventral surfaces of the brain, spinal cord, cranial dura, skull base, optic and trigeminal nerves and cervical lymph nodes. Results Based on the in vivo data, there was evidence of CSF elimination, as determined by the rate of clearance, from the nasal route across the cribriform plate and spinal subarachnoid space, but not from the dorsal dural regions. Using ex vivo tissue samples, the presence of tracer was confirmed in the cribriform area and olfactory regions, around pial blood vessels, spinal subarachnoid space, spinal cord and cervical lymph nodes but not for the dorsal dura, skull base or the other cranial nerves. Also, ex vivo tissues showed retention of tracer along brain fissures and regions associated with cisterns on the brain surfaces, but not in the brain parenchyma. Aging reduced CSF elimination across the cribriform plate but not that from the spinal SAS nor retention on the brain surfaces. Conclusions Collectively, these data show that the main CSF outflow sites were the nasal region across the cribriform plate and from the spinal regions in mice. In young adult mice, the contribution of the nasal and cribriform route to outflow was much higher than from the spinal regions. In older mice, the contribution of the nasal route to CSF outflow was reduced significantly but not for the spinal routes. This kinetic approach may have significance in determining early changes in CSF drainage in neurological disorder, age-related cognitive decline and brain diseases.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1833
Author(s):  
Shannon Morgan McCabe ◽  
Ningning Zhao

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


2021 ◽  
Vol 4 (4) ◽  
pp. 551-565
Author(s):  
Ryan D Bitar ◽  
Jorge L Torres-Garza ◽  
Russel J Reiter ◽  
William T Phillips

The central nervous system was thought to lack a lymphatic drainage until the recent discovery of the neural glymphatic system.  This highly specialized waste disposal network includes classical lymphatic vessels in the dura that absorb fluid and metabolic by-products and debris from the underlying cerebrospinal fluid (CSF) in the subarachnoid space. The subarachnoid space is continuous with the Virchow-Robin peri-arterial and peri-vascular spaces which surround the arteries and veins that penetrate into the neural tissue, respectively.  The dural lymphatic vessels exit the cranial vault via an anterior and a posterior route and eventually drain into the deep cervical lymph nodes. Aided by the presence of aquaporin 4 on the perivascular endfeet of astrocytes, nutrients and other molecules enter the brain from peri-arterial spaces and form interstitial fluid (ISF) that baths neurons and glia before being released into peri-venous spaces.  Melatonin, a pineal-derived secretory product which is in much higher concentration in the CSF than in the blood, is believed to follow this route and to clear waste products such as amyloid-β from the interstitial space. The clearance of amyloid-β reportedly occurs especially during slow wave sleep which happens concurrently with highest CSF levels of melatonin.  Experimentally, exogenously-administered melatonin defers amyloid-β buildup in the brain of animals and causes its accumulation in the cervical lymph nodes. Clinically, with increased age CSF melatonin levels decrease markedly, co-incident with neurodegeneration and dementia.  Collectively, these findings suggest a potential association between the loss of melatonin, decreased glymphatic drainage and neurocognitive decline in the elderly.


2019 ◽  
Vol 216 (11) ◽  
pp. 2492-2502 ◽  
Author(s):  
Qiaoli Ma ◽  
Yann Decker ◽  
Andreas Müller ◽  
Benjamin V. Ineichen ◽  
Steven T. Proulx

The pathways of circulation and clearance of cerebrospinal fluid (CSF) in the spine have yet to be elucidated. We have recently shown with dynamic in vivo imaging that routes of outflow of CSF in mice occur along cranial nerves to extracranial lymphatic vessels. Here, we use near-infrared and magnetic resonance imaging to demonstrate the flow of CSF tracers within the spinal column and reveal the major spinal pathways for outflow to lymphatic vessels in mice. We found that after intraventricular injection, a spread of CSF tracers occurs within both the central canal and the spinal subarachnoid space toward the caudal end of the spine. Outflow of CSF tracers from the spinal subarachnoid space occurred predominantly from intravertebral regions of the sacral spine to lymphatic vessels, leading to sacral and iliac LNs. Clearance of CSF from the spine to lymphatic vessels may have significance for many conditions, including multiple sclerosis and spinal cord injury.


2021 ◽  
Vol 14 ◽  
Author(s):  
Steven W. Bothwell ◽  
Daniel Omileke ◽  
Rebecca J. Hood ◽  
Debbie-Gai Pepperall ◽  
Sara Azarpeykan ◽  
...  

Oedema-independent intracranial pressure (ICP) rise peaks 20–22-h post-stroke in rats and may explain early neurological deterioration. Cerebrospinal fluid (CSF) volume changes may be involved. Cranial CSF clearance primarily occurs via the cervical lymphatics and movement into the spinal portion of the cranio-spinal compartment. We explored whether impaired CSF clearance at these sites could explain ICP rise after stroke. We recorded ICP at baseline and 18-h post-stroke, when we expect changes contributing to peak ICP to be present. CSF clearance was assessed in rats receiving photothrombotic stroke or sham surgery by intraventricular tracer infusion. Tracer concentration was quantified in the deep cervical lymph nodes ex vivo and tracer transit to the spinal subarachnoid space was imaged in vivo. ICP rose significantly from baseline to 18-h post-stroke in stroke vs. sham rats [median = 5 mmHg, interquartile range (IQR) = 0.1–9.43, n = 12, vs. −0.3 mmHg, IQR = −1.9–1.7, n = 10], p = 0.03. There was a bimodal distribution of rats with and without ICP rise. Tracer in the deep cervical lymph nodes was significantly lower in stroke with ICP rise (0 μg/mL, IQR = 0–0.11) and without ICP rise (0 μg/mL, IQR = 0–4.47) compared with sham rats (4.17 μg/mL, IQR = 0.74–8.51), p = 0.02. ICP rise was inversely correlated with faster CSF transit to the spinal subarachnoid space (R = −0.59, p = 0.006, Spearman’s correlation). These data suggest that reduced cranial clearance of CSF via cervical lymphatics may contribute to post-stroke ICP rise, partially compensated via increased spinal CSF outflow.


Blood ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 806-812 ◽  
Author(s):  
Eric Hatterer ◽  
Nathalie Davoust ◽  
Marianne Didier-Bazes ◽  
Carine Vuaillat ◽  
Christophe Malcus ◽  
...  

AbstractThe lack of draining lymphatic vessels in the central nervous system (CNS) contributes to the so-called “CNS immune privilege.” However, despite such a unique anatomic feature, dendritic cells (DCs) are able to migrate from the CNS to cervical lymph nodes through a yet unknown pathway. In this report, labeled bone marrow-derived myeloid DCs were injected stereotaxically into the cerebrospinal fluid (CSF) or brain parenchyma of normal rats. We found that DCs injected within brain parenchyma migrate little from their site of injection and do not reach cervical lymph nodes. In contrast, intra-CSF-injected DCs either reach cervical lymph nodes or, for a minority of them, infiltrate the subventricular zone, where neural stem cells reside. Surprisingly, DCs that reach cervical lymph nodes preferentially target B-cell follicles rather than T-cell-rich areas. This report sheds a new light on the specific role exerted by CSF-infiltrating DCs in the control of CNS-targeted immune responses. (Blood. 2006; 107:806-812)


2021 ◽  
Author(s):  
Anaïs Virenque ◽  
Raz Balin ◽  
Francesco M. Noe

AbstractDrainage of intraparenchymal hematoma is crucial for the treatment of intracerebral hemorrhage (ICH). We investigated here the possible function of the meningeal lymphatic vessels (mLVs) in ICH resolution. Meningeal lymphatics have been reported to be involved in cerebrospinal fluid drainage, but their role in the drainage and clearance of brain parenchyma has not been characterized in details. Using two preclinical models of ICH, mimicking focal cortical ischemic hemorrhage and subcortical extended hemorrhage, we characterized the dynamics of blood drainage through the dorsal mLVs by two-photon real time imaging in awake mice. After ICH induction, we observe the flow of blood-derived components within the mLVs, suggesting that meningeal lymphatics can play a role in facilitating the drainage of the hemorrhage. We also found that local formation of new mLVs is directly correlated with ICH-related neuroinflammation levels. These findings suggest that meningeal lymphatics could provide a valuable therapeutic target for ICH resolution.SummaryIn vivo awake imaging reveals the direct drainage of extravasated blood-solutes from brain parenchyma into dorsal meningeal lymphatic vessels, following focal or diffuse intracranial hemorrhage


1999 ◽  
Vol 190 (9) ◽  
pp. 1351-1356 ◽  
Author(s):  
Aldo Del Maschio ◽  
Ada De Luigi ◽  
Ines Martin-Padura ◽  
Manfred Brockhaus ◽  
Tamas Bartfai ◽  
...  

The mechanisms that govern leukocyte transmigration through the endothelium are not yet fully defined. Junctional adhesion molecule (JAM) is a newly cloned member of the immunoglobulin superfamily which is selectively concentrated at tight junctions of endothelial and epithelial cells. A blocking monoclonal antibody (BV11 mAb) directed to JAM was able to inhibit monocyte transmigration through endothelial cells in in vitro and in vivo chemotaxis assays. In this study, we report that BV11 administration was able to attenuate cytokine-induced meningitis in mice. The intravenous injection of BV11 mAb significantly inhibited leukocyte accumulation in the cerebrospinal fluid and infiltration in the brain parenchyma. Blood–brain barrier permeability was also reduced by the mAb. We conclude that JAM may be a new target in limiting the inflammatory response that accompanies meningitis.


1992 ◽  
Vol 263 (4) ◽  
pp. H1234-H1242 ◽  
Author(s):  
C. D. Kontos ◽  
E. P. Wei ◽  
J. I. Williams ◽  
H. A. Kontos ◽  
J. T. Povlishock

We used a cytochemical technique for the detection of superoxide in cerebral inflammation and ischemia-reperfusion in anesthetized cats. The technique is based on the oxidation of Mn2+ to Mn3+ by superoxide; Mn3+, in turn, oxidizes diaminobenzidine. The oxidized diaminobenzidine forms an osmiophilic electron-dense product that is detected by electron microscopy. The reagents, manganese chloride (2 mM) and diaminobenzidine (2 mg/ml), were placed topically on the brain surface of anesthetized cats equipped with cranial windows. Inflammation was induced by topical carrageenan with or without phorbol 12-myristate 13-acetate to activate leukocytes. In inflammation, superoxide was detected in the plasma membrane and in the phagocytic vacuoles of leukocytes. In ischemia-reperfusion, superoxide was identified in the meninges in association with blood vessels. It was located primarily in the extracellular space and occasionally in endothelial and vascular smooth muscle cells. In both inflammation and ischemia, the reaction product was eliminated by superoxide dismutase or by the omission of either manganese or diaminobenzidine. It was unaffected by sodium azide, which inhibits peroxidases. No superoxide was detected in the brain parenchyma. The findings confirm the generation of superoxide is cerebral ischemia-reperfusion and show that it is produced in cerebral vessels.


Sign in / Sign up

Export Citation Format

Share Document