scholarly journals Particulate matters increase epithelial-mesenchymal transition and lung fibrosis through the ETS-1/NF-κB-dependent pathway in lung epithelial cells

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yu-Chen Chen ◽  
Tzu-Yi Chuang ◽  
Chen-Wei Liu ◽  
Chi-Wei Liu ◽  
Tzu-Lin Lee ◽  
...  
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8514 ◽  
Author(s):  
Yanni Gui ◽  
Jian Sun ◽  
Wenjie You ◽  
Yuanhui Wei ◽  
Han Tian ◽  
...  

Background Epithelial-mesenchymal transition (EMT) plays an important role in fibrosis, chronic inflammation, tumor metastasis, etc. Glycyrrhizin, an active component extracted from licorice plant, has been reported to treat a variety of inflammatory reactions through inhibiting high-mobility group box1 (HMGB1), which has been suggested to be a significant mediator in EMT process. However, whether glycyrrhizin affects the EMT process or not remains unclear. Methods Human alveolar epithelial cell line A549 and normal human bronchial epithelial cell line BEAS-2B were treated with extrinsic TGF-β1 to induce EMT. Elisa was used to detect HMGB1 concentrations in cell supernatant. RNA interference and lentivirus infection experiments were performed to investigate the involvement of HMGB1 in EMT process. Cell Counting Kit-8 (CCK-8) was used to detect the viability of A549 and BEAS-2B cells treated with glycyrrhizin. Finally, the effects of glycyrrhizin on EMT changes, as well as the underlying mechanisms, were evaluated via Western blot, immunofluorescence and transwell assays. Results Our results showed that HMGB1 expression was increased by TGF-β1, and knockdown of HMGB1 expression reversed TGF-β1-induced EMT in A549 and BEAS-2B cells. Ectopic HMGB1 expression or TGF-β1 treatment caused a significant increase in HMGB1 release. Notably, we found that glycyrrhizin treatment effectively suppressed TGF-β1-induced EMT process by inhibiting HMGB1. Also, glycyrrhizin significantly inhibited the migration of both A549 and BEAS-2B cells promoted by TGF-β1. Mechanistically, HMGB1 overexpression could activate Smad2/3 signaling in A549 and BEAS-2B cells. Glycyrrhizin significantly blocked the phosphorylation of Smad2/3 stimulated either by TGF-β1 or by ectopic HMGB1 in A549 and BEAS-2B cells. Conclusions HMGB1 is a vital mediator of EMT changes induced by TGF-β1 in lung epithelial cells. Importantly, glycyrrhizin can effectively block Smad2/3 signaling pathway through inhibiting HMGB1, thereby suppressing the EMT progress.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Kai Yang ◽  
Yun Song ◽  
Ya-Bing Tang ◽  
Zu-Peng Xu ◽  
Wei Zhou ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8388
Author(s):  
Soo-Jin Park ◽  
Tae-hyoun Kim ◽  
Kiram Lee ◽  
Min-Ah Kang ◽  
Hyun-Jae Jang ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a refractory interstitial lung disease for which there is no effective treatment. Although the pathogenesis of IPF is not fully understood, TGF-β and epithelial–mesenchymal transition (EMT) have been shown to be involved in the fibrotic changes of lung tissues. Kurarinone is a prenylated flavonoid isolated from Sophora Flavescens with antioxidant and anti-inflammatory properties. In this study, we investigated the effect of kurarinone on pulmonary fibrosis. Kurarinone suppressed the TGF-β-induced EMT of lung epithelial cells. To assess the therapeutic effects of kurarinone in bleomycin (BLM)-induced pulmonary fibrosis, mice were treated with kurarinone daily for 2 weeks starting 7 days after BLM instillation. Oral administration of kurarinone attenuated the fibrotic changes of lung tissues, including accumulation of collagen and improved mechanical pulmonary functions. Mechanistically, kurarinone suppressed phosphorylation of Smad2/3 and AKT induced by TGF-β1 in lung epithelial cells, as well as in lung tissues treated with BLM. Taken together, these results suggest that kurarinone has a therapeutic effect on pulmonary fibrosis via suppressing TGF-β signaling pathways and may be a novel drug candidate for pulmonary fibrosis.


Sign in / Sign up

Export Citation Format

Share Document