scholarly journals Variants in a cis-regulatory element of TBX1 in conotruncal heart defect patients impair GATA6-mediated transactivation

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xuechao Jiang ◽  
Tingting Li ◽  
Sijie Liu ◽  
Qihua Fu ◽  
Fen Li ◽  
...  

Abstract Background TBX1 (T-box transcription factor 1) is a major candidate gene that likely contributes to the etiology of velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Although the haploinsufficiency of TBX1 in both mice and humans results in congenital cardiac malformations, little has been elucidated about its upstream regulation. We aimed to explore the transcriptional regulation and dysregulation of TBX1. Methods Different TBX1 promoter reporters were constructed. Luciferase assays and electrophoretic mobility shift assays (EMSAs) were used to identify a cis-regulatory element within the TBX1 promoter region and its trans-acting factor. The expression of proteins was identified by immunohistochemistry and immunofluorescence. Variants in the cis-regulatory element were screened in conotruncal defect (CTD) patients. In vitro functional assays were performed to show the effects of the variants found in CTD patients on the transactivation of TBX1. Results We identified a cis-regulatory element within intron 1 of TBX1 that was found to be responsive to GATA6 (GATA binding protein 6), a transcription factor crucial for cardiogenesis. The expression patterns of GATA6 and TBX1 overlapped in the pharyngeal arches of human embryos. Transfection experiments and EMSA indicated that GATA6 could activate the transcription of TBX1 by directly binding with its GATA cis-regulatory element in vitro. Furthermore, sequencing analyses of 195 sporadic CTD patients without the 22q11.2 deletion or duplication identified 3 variants (NC_000022.11:g.19756832C > G, NC_000022.11:g.19756845C > T, and NC_000022.11:g. 19756902G > T) in the non-coding cis-regulatory element of TBX1. Luciferase assays showed that all 3 variants led to reduced transcription of TBX1 when incubated with GATA6. Conclusions Our findings showed that TBX1 might be a direct transcriptional target of GATA6, and variants in the non-coding cis-regulatory element of TBX1 disrupted GATA6-mediated transactivation.

2003 ◽  
Vol 376 (3) ◽  
pp. 707-715 ◽  
Author(s):  
Eleonora MARSICH ◽  
Amedeo VETERE ◽  
Matteo DI PIAZZA ◽  
Gianluca TELL ◽  
Sergio PAOLETTI

PAX6 is a transcription factor that plays an important role during pancreatic morphogenesis. The aim of the present study is to identify the upstream activator(s) of the PAX6 gene possibly involved in the early stages of pancreatic differentiation. Recently, individual elements regulating PAX6 gene activity in the pancreas have been identified in a 1100 bp Spe/HincII fragment 4.6 kb upstream of exon 0. Preliminary sequence analysis of this region revealed some potential DNA-binding sites (E boxes) specific for the binding of basic helix–loop–helix transcription factors. By using electrophoretic mobility shift assays, we demonstrated that both nuclear protein extracts from insulin-secreting RINm5F cells and in vitro-translated NeuroD/BETA2 can bind specifically to these E boxes. Furthermore, by transient transfection experiments we demonstrated that the expression of basic helix–loop–helix transcription factor NeuroD/BETA2 can induce activation of the PAX6 promoter in the NIH-3T3 cell line. Thus we show that NeuroD/BETA2 is involved in the activation of the expression of PAX6 through E boxes in the PAX6 promoter localized in a 1.1 kb sequence within the 4.6 kb untranslated region upstream of exon 0.


1997 ◽  
Vol 11 (11) ◽  
pp. 1651-1658 ◽  
Author(s):  
Limin Liu ◽  
Douglas Leaman ◽  
Michel Villalta ◽  
R. Michael Roberts

Abstract CG is required for maintenance of the corpus luteum during pregnancy in higher primates. As CG is a heterodimeric molecule, some form of coordinated control must be maintained over the transcription of its two subunit genes. We recently found that expression of human CG β-subunit (hCGβ) in JAr human choriocarcinoma cells was almost completely silenced by the embryonic transcription factor Oct-3/4, which bound to a unique ACAATAATCA octameric sequence in the hCGβ gene promoter. Here we report that Oct-3/4 is also a potent inhibitor of hCG α-subunit (hCGα) expression in JAr cells. Oct-3/4 reduced human GH reporter expression from the −170 hCGα promoter in either the presence or absence of cAMP by about 70% in transient cotransfection assays, but had no effect on expression from either the −148 hCGα or the −99 hCGα promoter. Unexpectedly, no Oct-3/4-binding site was identified within the −170 to −148 region of the hCGα promoter, although one was found around position −115 by both methylation interference footprinting and electrophoretic mobility shift assays. Site-directed mutagenesis of this binding site destroyed the affinity of the promoter for Oct-3/4, but did not affect repression of the promoter. Therefore, inhibition of hCGα gene transcription by Oct-3/4 appears not to involve direct binding of this factor to the site responsible for silencing. When stably transfected into JAr cells, Oct-3/4 reduced the amounts of both endogenous hCGα mRNA and protein by 70–80%. Oct-3/4 is therefore capable of silencing both hCGα and hCGβ gene expression. We suggest that as the trophoblast begins to form, reduction of Oct-3/4 expression permits the coordinated onset of transcription from the hCGα and hCGβ genes.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Stefanie Schmitteckert ◽  
Cornelia Ziegler ◽  
Liane Kartes ◽  
Alexandra Rolletschek

Transcription factor Lbx1 is known to play a role in the migration of muscle progenitor cells in limb buds and also in neuronal determination processes. In addition, involvement of Lbx1 in cardiac neural crest-related cardiogenesis was postulated. Here, we used mouse embryonic stem (ES) cells which have the capacity to develop into cells of all three primary germ layers. Duringin vitrodifferentiation, ES cells recapitulate cellular developmental processes and gene expression patterns of early embryogenesis. Transcript analysis revealed a significant upregulation ofLbx1at the progenitor cell stage. Immunofluorescence staining confirmed the expression of Lbx1 in skeletal muscle cell progenitors and GABAergic neurons. To verify the presence of Lbx1 in cardiac cells, triple immunocytochemistry of ES cell-derived cardiomyocytes and a quantification assay were performed at different developmental stages. Colabeling of Lbx1 and cardiac specific markers troponin T, α-actinin, GATA4, and Nkx2.5 suggested a potential role in early myocardial development.


2005 ◽  
Vol 387 (2) ◽  
pp. 401-409 ◽  
Author(s):  
Jolanta KOPEC ◽  
Alexander BERGMANN ◽  
Gerhard FRITZ ◽  
Elisabeth GROHMANN ◽  
Walter KELLER

TraA is the DNA relaxase encoded by the broad-host-range Grampositive plasmid pIP501. It is the second relaxase to be characterized from plasmids originating from Gram-positive organisms. Full-length TraA (654 amino acids) and the N-terminal domain (246 amino acids), termed TraAN246, were expressed as 6×His-tagged fusions and purified. Small-angle X-ray scattering and chemical cross-linking proved that TraAN246 and TraA form dimers in solution. Both proteins revealed oriTpIP501 (origin of transfer of pIP501) cleavage activity on supercoiled plasmid DNA in vitro. oriT binding was demonstrated by electrophoretic mobility shift assays. Radiolabelled oligonucleotides covering different parts of oriTpIP501 were subjected to binding with TraA and TraAN246. The KD of the protein–DNA complex encompassing the inverted repeat, the nick site and an additional 7 bases was found to be 55 nM for TraA and 26 nM for TraAN246. The unfolding of both protein constructs was monitored by measuring the change in the CD signal at 220 nm upon temperature change. The unfolding transition of both proteins occurred at approx. 42 °C. CD spectra measured at 20 °C showed 30% α-helix and 13% β-sheet for TraA, and 27% α-helix and 18% β-sheet content for the truncated protein. Upon DNA binding, an enhanced secondary structure content and increased thermal stability were observed for the TraAN246 protein, suggesting an induced-fit mechanism for the formation of the specific relaxase–oriT complex.


2007 ◽  
Vol 282 (46) ◽  
pp. 33326-33335 ◽  
Author(s):  
David Corbett ◽  
Hayley J. Bennett ◽  
Hamdia Askar ◽  
Jeffrey Green ◽  
Ian S. Roberts

In this paper, we present the first evidence of a role for the transcriptional regulator SlyA in the regulation of transcription of the Escherichia coli K5 capsule gene cluster and demonstrate, using a combination of reporter gene fusions, DNase I footprinting, and electrophoretic mobility shift assays, the dependence of transcription on the functional interplay between H-NS and SlyA. Both SlyA and H-NS bind to multiple overlapping sites within the promoter in vitro, but their binding is not mutually exclusive, resulting in a remodeled nucleoprotein complex. In addition, we show that expression of the E. coli slyA gene is temperature-regulated, positively autoregulated, and independent of H-NS.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Chang Hyun Byon ◽  
Jay McDonald ◽  
Yabing Chen

The expression of receptor activator of nuclear factor κ B (RANKL) is up-regulated in calcified atherosclerotic lesions, whereas it is frequently undetectable in normal vessels. The underlying molecular mechanism of increased expression of RANKL in calcified vessels is not known. We have previously demonstrated that oxidative stress induces calcification of vascular smooth muscle cells (VSMC) in vitro . Therefore, we determined whether oxidative stress regulates RANKL expression in VSMC and the underlying molecular mechanism. Consistent with previous observations in vivo , we found that the expression of RANKL in VSMC isolated from mouse. However, hydrogen peroxide (H 2 O 2 ), which induces VSMC calcification, induced a 33-fold increase in the transcripts of RANKL as determined by real-time PCR. Increased expression of RANKL protein was further confirmed by ELISA. Using flow cytometry, we demonstrated that membrane-bound RANKL was increased by oxidative stress. To characterize the molecular mechanism underlying H 2 O 2 -induced RANKL expression, we employed the luciferase reporter system with a series of deletion mutants of the RANKL 5′-flanking region. The H 2 O 2 responsive region is located between −200 to −400 in the 5′-flanking region of RANKL gene. Analyses of the sequence of this region identified multiple binding sites for the key osteogenic transcription factor, Runx2, which we previously reported to be an essential regulator of VSMC calcification. Electrophoretic mobility shift analyses demonstrated increased binding of Runx2 on the RANKL promoter sequence in nuclear extracts from VSMC exposed to H 2 O 2 . To further determine the role of Runx2 in regulating RANKL expression, we generated stable Runx2 knockdown VSMC with the use of lentivirus-carrying shRNA for Runx2 gene. H 2 O 2 -induced RANKL expression was abrogated in VSMC with Runx2 knockdown. In addition, adenovirus-mediated overexpression of Runx2 in VSMC induced the expression of RANKL. In summary, we have demonstrated that H 2 O 2 induces the expression of RANKL in VSMC, which is regulated by the osteogenic transcription factor Runx2. These observations provide novel molecular insights into the regulation of RANKL and its role on the pathogenesis of calcified atherosclerotic lesions.


2006 ◽  
Vol 290 (3) ◽  
pp. F657-F665 ◽  
Author(s):  
Scott Martinka ◽  
Leslie A. Bruggeman

Human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) is caused, in part, by direct infection of kidney epithelial cells by HIV-1. In the spectrum of pathogenic host-virus interactions, abnormal activation or suppression of host transcription factors is common. NF-κB is a necessary host transcription factor for HIV-1 gene expression, and it has been shown that NF-κB activity is dysregulated in many naturally infected cell types. We show here that renal glomerular epithelial cells (podocytes) expressing the HIV-1 genome, similar to infected immune cells, also have a dysregulated and persistent activation of NF-κB. Although podocytes produce p50, p52, RelA, RelB, and c-Rel, electrophoretic mobility shift assays and immunocytochemistry showed a predominant nuclear accumulation of p50/RelA-containing NF-κB dimers in HIV-1-expressing podocytes compared with normal. In addition, the expression level of a transfected NF-κB reporter plasmid was significantly higher in HIVAN podocytes. The mechanism of NF-κB activation involved increased phosphorylation of IκBα, resulting in an enhanced turnover of the IκBα protein. There was no evidence for regulation by IκBβ or the alternate pathway of NF-κB activation. Altered activation of this key host transcription factor likely plays a role in the well-described cellular phenotypic changes observed in HIVAN, such as proliferation. Studies with inhibitors of proliferation and NF-κB suggest that NF-κB activation may contribute to the proliferative mechanism in HIVAN. In addition, because NF-κB regulates many aspects of inflammation, this dysregulation may also contribute to disease severity and progression through regulation of proinflammatory processes in the kidney microenvironment.


Microbiology ◽  
2014 ◽  
Vol 160 (8) ◽  
pp. 1637-1647 ◽  
Author(s):  
Satya Deo Pandey ◽  
Mitali Choudhury ◽  
Manjula Sritharan

The influence of iron levels on the transcription of the hupB gene in Mycobacterium tuberculosis is the focus of this study. Studies in our laboratory showed HupB to be co-expressed with the two siderophores in low-iron organisms. Mycobactin biosynthesis is repressed by the IdeR–Fe2+ complex that binds the IdeR box in the mbtB promoter. Recently, we demonstrated the positive regulatory effect of HupB on mycobactin biosynthesis by demonstrating its binding to a 10 bp HupB box in the mbtB promoter. Earlier, we observed that HupB, expressed maximally in low-iron media (0.02 µg Fe ml−1; 0.36 µM Fe) was still detectable at 8 µg Fe ml−1 (144 µM Fe) when the siderophores were absent and complete repression was seen only at 12 µg Fe ml−1 (216 µM Fe). In this study, we observed elevated levels of hupB transcripts in iron-limited organisms. IdeR, and not FurA, functioned as the iron regulator, by binding to two IdeR boxes in the hupB promoter. Interestingly, the 10 bp HupB box, first reported in the mbtB promoter, was identified in the hupB promoter. Using DNA footprinting and electrophoretic mobility shift assays, we demonstrated the functionality of the HupB box and the two IdeR boxes. The high hupB transcript levels expressed by the organism and the in vitro protein–DNA interaction studies led us to hypothesize the sequence of events occurring in response to changes in the intracellular iron concentration, emphasizing the roles played by IdeR and HupB in iron homeostasis.


1995 ◽  
Vol 311 (3) ◽  
pp. 769-773 ◽  
Author(s):  
M A Bevilacqua ◽  
M C Faniello ◽  
P D′Agostino ◽  
B Quaresima ◽  
M T Tiano ◽  
...  

In this paper, we examine the mechanisms that regulate the expression of the heavy (H) ferritin subunit in the colon carcinoma Caco-2 cell line allowed to differentiate spontaneously in vitro. The differentiation process of these cells in continuous culture is accompanied by an accumulation of the mRNA coding for the apoferritin H chain. The analysis of Caco-2 subclones stably transfected with an H-chain promoter-chloramphenicol acetyltransferase (CAT) construct revealed that the mRNA increase is paralleled by an enhanced transcription of the H gene, driven by the -100 to +4 region of the H promoter. The H gene transcriptional activation seems to be a specific feature of differentiated Caco-2 cells, since the activity of other promoters did not change upon differentiation. The -100 to +4 region of the H promoter binds a transcription factor called Bbf (B-box binding factor); electrophoretic-mobility-shift-assay analyses showed that the retarded complex due to Bbf-H promoter interaction is significantly increased in the differentiated cells. We propose that the activation of H-ferritin gene expression may be associated with the establishment of a differentiated phenotype in Caco-2 cells, and that the H-ferritin gene transcriptional up-regulation is accompanied by a modification in the activity of the transcription factor Bbf.


2008 ◽  
Vol 20 (1) ◽  
pp. 163
Author(s):  
T. Anand ◽  
D. Kumar ◽  
M. K. Singh ◽  
M. S. Chauhan ◽  
R. S. Manik ◽  
...  

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of blastocysts. These are pluripotent cells that retain the ability to differentiate into all cell types. Various cell surface antigens, the expressions of which have been widely used as markers to monitor the pluripotency of ESCs, include Oct-4, stage-specific embryonic antigens (SSEAs) such as SSEA-1, SSEA-3, and SSEA-4, and tumor rejection antigens (TRAs) such as TRA-1-60 and TRA-1-81. In this study, the cell surface expression patterns of these markers were examined in in vitro-produced buffalo embryos at the 2-, 4-, 8- to 16-cell, morula, and blastocyst stages using immunofluorescence microscopy. Oocytes obtained from slaughterhouse buffalo ovaries were subjected to IVM and IVF, following which the cleaved embryos were cultured for 9 days for production of embryos at different stages (n = 246). The embryos were fixed in 4% paraformaldehyde in Dulbecco's phosphate-buffered saline (DPBS) for 30 min, permeabilized by treatment with 0.1% Triton X-100 in DPBS for 30 min, and incubated first with the blocking solution (4% normal goat serum) for 30 min and then with the primary antibody (Oct-4: clone 9E3; SSEA-1: MC-480; SSEA-3: MC-631; SSEA-4: MC-813-70; TRA-1-60: clone TRA-1-60; and TRA-1-81: clone TRA-1-81, Chemicon� Inc., Temecula, CA, USA) at a dilution of 1:10 to 1:20 for 1 h. After being washed with DPBS, the embryos were incubated with appropriate FITC-labeled second antibody (anti-rat IgM or anti-mouse IgG or IgM, diluted 1:100 to 1:200) for 1 h and then examined under a fluorescence microscope. Oct-4 expression was detected at all embryonic stages starting from the 2-cell to the blastocyst stage, in which ICM, but not trophectoderm cells, exhibited a strong expression. SSEA-4 signal was found to be strongest at the 2-cell stage, with continued expression at all intermediate stages until the blastocyst stage in which there was a strong expression in ICM cells. In contrast, all of the embryonic stages were found to be negative for SSEA-3 expression. The SSEA-1 signal was present at all of the embryonic stages but was very weak. Expression of TRA-1-60 and TRA-1-81, which was detected only on the inner surface of the zona pellucida and in the perivitelline space in early embryonic stages, was absent in morulae and blastocysts. The results of this study indicate that the pluripotency-determining markers are differentially expressed in buffalo embryos and that the pattern of their expression is distinct from that of murine and human embryos but resembles to some extent that of goat embryos. Comparison of the expression pattern of these markers needs to be done between embryonic cells and ESCs for a better understanding of their developmental regulation.


Sign in / Sign up

Export Citation Format

Share Document