scholarly journals Emerging SARS-CoV-2 variants of concern and potential intervention approaches

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Jasmin Khateeb ◽  
Yuchong Li ◽  
Haibo Zhang

AbstractThe major variant of concerns (VOCs) have shared mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins, mostly on the S1 unit and resulted in higher transmissibility rate and affect viral virulence and clinical outcome. The spike protein mutations and other non-structural protein mutations in the VOCs may lead to escape approved vaccinations in certain extend. We will discuss these VOC mutations and discuss the need for combination therapeutic strategies targeting viral cycle and immune host responses.

2021 ◽  
Author(s):  
Takuya Tada ◽  
Belinda M. Dcosta ◽  
Hao Zhou ◽  
Ada Vaill ◽  
Wes Kazmierski ◽  
...  

AbstractMonoclonal antibodies against the SARS-CoV-2 spike protein, notably, those developed by Regeneron Pharmaceuticals and Eli Lilly and Company have proven to provide protection against severe COVID-19. The emergence of SARS-CoV-2 variants with heavily mutated spike proteins raises the concern that the therapy could become less effective if any of the mutations disrupt epitopes engaged by the antibodies. In this study, we tested monoclonal antibodies REGN10933 and REGN10987 that are used in combination, for their ability to neutralize SARS-CoV-2 variants B.1.1.7, B.1.351, mink cluster 5 and COH.20G/677H. We report that REGN10987 maintains most of its neutralization activity against viruses with B.1.1.7, B.1.351 and mink cluster 5 spike proteins but that REGN10933 has lost activity against B.1.351 and mink cluster 5. The failure of REGN10933 to neutralize B.1.351 is caused by the K417N and E484K mutations in the receptor binding domain; the failure to neutralize the mink cluster 5 spike protein is caused by the Y453F mutation. The REGN10933 and REGN10987 combination was 9.1-fold less potent on B.1.351 and 16.2-fold less potent on mink cluster 5, raising concerns of reduced efficacy in the treatment of patients infected with variant viruses. The results suggest that there is a need to develop additional monoclonal antibodies that are not affected by the current spike protein mutations.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Daniela Loconsole ◽  
Anna Sallustio ◽  
Marisa Accogli ◽  
Francesca Centrone ◽  
Loredana Capozzi ◽  
...  

The coding-complete sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was obtained from a sample from a 25-year-old female returning to the Apulia region of Italy from England. The characterized strain showed all of the spike protein mutations defining SARS-CoV-2 VUI 202012/01, as well as other mutations in the spike protein and in other genomic regions.


2021 ◽  
Author(s):  
Adam Leach ◽  
Ami Miller ◽  
Emma Bentley ◽  
Giada Mattiuzzo ◽  
Jemima Thomas ◽  
...  

Abstract Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 disease. Therapeutic antibodies are being developed that interact with the viral spike proteins to limit viral infection of epithelium. We have applied a method to dramatically improve the performance of anti-SARS-CoV-2 antibodies by enhancing avidity through multimerization using simple engineering to yield tetrameric antibodies. We have re-engineered six anti-SARS-CoV-2 antibodies using the human p53 tetramerization domain, including three clinical trials antibodies casirivimab, imdevimab and etesevimab. The method yields tetrameric antibodies, termed Quads, that retain efficient binding to the SARS-CoV-2 spike protein and show up to two orders of magnitude enhancement in neutralization of pseudovirus infection. The tetramerization method is simple and general and its application is a powerful methodological development for SARS-CoV-2 antibodies that are currently in pre-clinical and clinical investigation.


2020 ◽  
Vol 222 (2) ◽  
pp. 206-213 ◽  
Author(s):  
Peter D Burbelo ◽  
Francis X Riedo ◽  
Chihiro Morishima ◽  
Stephen Rawlings ◽  
Davey Smith ◽  
...  

Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), is associated with respiratory-related disease and death. Assays to detect virus-specific antibodies are important to understand the prevalence of infection and the course of the immune response. Methods Quantitative measurements of plasma or serum antibodies to the nucleocapsid and spike proteins were analyzed using luciferase immunoprecipitation system assays in 100 cross-sectional or longitudinal samples from patients with SARS-CoV-2 infection. A subset of samples was tested both with and without heat inactivation. Results At >14 days after symptom onset, antibodies against SARS-CoV-2 nucleocapsid protein showed 100% sensitivity and 100% specificity, whereas antibodies to spike protein were detected with 91% sensitivity and 100% specificity. Neither antibody levels nor the rate of seropositivity were significantly reduced by heat inactivation of samples. Analysis of daily samples from 6 patients with COVID-19 showed anti-nucleocapsid and spike protein antibodies appearing between days 8 and 14 after initial symptoms. Immunocompromised patients generally had a delayed antibody response to SARS-CoV-2, compared with immunocompetent patients. Conclusions Antibody to the nucleocapsid protein of SARS-CoV-2 is more sensitive than spike protein antibody for detecting early infection. Analyzing heat-inactivated samples with a luciferase immunoprecipitation system assay is a safe and sensitive method for detecting SARS-CoV-2 antibodies.


2020 ◽  
Vol 94 (20) ◽  
Author(s):  
Hua Guo ◽  
Bing-Jie Hu ◽  
Xing-Lou Yang ◽  
Lei-Ping Zeng ◽  
Bei Li ◽  
...  

ABSTRACT The Chinese horseshoe bat (Rhinolophus sinicus), reservoir host of severe acute respiratory syndrome coronavirus (SARS-CoV), carries many bat SARS-related CoVs (SARSr-CoVs) with high genetic diversity, particularly in the spike gene. Despite these variations, some bat SARSr-CoVs can utilize the orthologs of the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), for entry. It is speculated that the interaction between bat ACE2 and SARSr-CoV spike proteins drives diversity. Here, we identified a series of R. sinicus ACE2 variants with some polymorphic sites involved in the interaction with the SARS-CoV spike protein. Pseudoviruses or SARSr-CoVs carrying different spike proteins showed different infection efficiencies in cells transiently expressing bat ACE2 variants. Consistent results were observed by binding affinity assays between SARS-CoV and SARSr-CoV spike proteins and receptor molecules from bats and humans. All tested bat SARSr-CoV spike proteins had a higher binding affinity to human ACE2 than to bat ACE2, although they showed a 10-fold lower binding affinity to human ACE2 compared with that of their SARS-CoV counterpart. Structure modeling revealed that the difference in binding affinity between spike and ACE2 might be caused by the alteration of some key residues in the interface of these two molecules. Molecular evolution analysis indicates that some key residues were under positive selection. These results suggest that the SARSr-CoV spike protein and R. sinicus ACE2 may have coevolved over time and experienced selection pressure from each other, triggering the evolutionary arms race dynamics. IMPORTANCE Evolutionary arms race dynamics shape the diversity of viruses and their receptors. Identification of key residues which are involved in interspecies transmission is important to predict potential pathogen spillover from wildlife to humans. Previously, we have identified genetically diverse SARSr-CoVs in Chinese horseshoe bats. Here, we show the highly polymorphic ACE2 in Chinese horseshoe bat populations. These ACE2 variants support SARS-CoV and SARSr-CoV infection but with different binding affinities to different spike proteins. The higher binding affinity of SARSr-CoV spike to human ACE2 suggests that these viruses have the capacity for spillover to humans. The positive selection of residues at the interface between ACE2 and SARSr-CoV spike protein suggests long-term and ongoing coevolutionary dynamics between them. Continued surveillance of this group of viruses in bats is necessary for the prevention of the next SARS-like disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Leach ◽  
Ami Miller ◽  
Emma Bentley ◽  
Giada Mattiuzzo ◽  
Jemima Thomas ◽  
...  

AbstractInfection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 disease. Therapeutic antibodies are being developed that interact with the viral spike proteins to limit viral infection of epithelium. We have applied a method to dramatically improve the performance of anti-SARS-CoV-2 antibodies by enhancing avidity through multimerization using simple engineering to yield tetrameric antibodies. We have re-engineered six anti-SARS-CoV-2 antibodies using the human p53 tetramerization domain, including three clinical trials antibodies casirivimab, imdevimab and etesevimab. The method yields tetrameric antibodies, termed quads, that retain efficient binding to the SARS-CoV-2 spike protein, show up to two orders of magnitude enhancement in neutralization of pseudovirus infection and retain potent interaction with virus variant of concern spike proteins. The tetramerization method is simple, general and its application is a powerful methodological development for SARS-CoV-2 antibodies that are currently in pre-clinical and clinical investigation.


2020 ◽  
Author(s):  
Vaishali Chandel ◽  
Prem Prakash Sharma ◽  
Sibin Raj ◽  
Brijesh Rathi ◽  
Dhruv Kumar

<p>Due to unavailability of therapeutic approach for the novel coronavirus disease (COVID-19), the drug repurposing approach would be the fastest and efficient way of drug development against this deadly disease. We have applied bioinformatics approach for structure-based drug repurposing to identify the potential inhibitors through drug screening, molecular docking and molecular dynamics against non-structural protein 9 (Nsp9) replicase and spike proteins of the SARS-CoV-2 from the FDA approved drugs. We have performed virtual screening of 2000 FDA approved compounds including antiviral, anti-malarial, anti-parasitic, anti-fungal, anti-tuberculosis and active phytochemicals against Nsp9 replicase and spike proteins of SARS-CoV-2. Molecular docking was performed using Autodock-Vina. Selected hit compounds were identified based on their highest binding energy and favourable ADME profile. Notably, Conivaptan, an arginine vasopressin antagonist drug exhibited highest binding energy (-8.4 Kcal/mol) and maximum stability with the amino acid residues present on the active site of Nsp9 replicase. Additionally, Tegobuvir, a non-nucleoside inhibitor of hepatitis C virus exhibited maximum stability with highest binding energy (-8.1 Kcal/mol) on the active site of spike protein. Molecular docking scores were further validated with the molecular dynamics using Schrodinger, which supported strong stability of ligands with proteins at their active site through water bridges, hydrophobic interactions, H-bond. Overall, our findings highlight the fact that Conivaptan and Tegobuvir could be used to control the infection and propagation of SARS-CoV-2 targeting Nsp9 replicase and spike protein, respectively. Moreover, <i>in vitro</i> and <i>in vivo</i> validation of these findings will be helpful in bringing these molecules at the clinical settings.</p>


Author(s):  
Peramachi Palanivelu

Aim: To analyze spike proteins of Severe Acute Respiratory Syndrome (SARS)-related coronaviruses (CoVs) for their conserved motifs, Receptor-Binding  Domain (RBD), Receptor Binding Motif (RBM) of SARS-CoV (CoV-1), SARS-CoV-2, Middle East Respiratory Syndrome (MERS)-CoV and their relationship to the bat, pangolin and palm civet-CoVs as possible intermediate hosts. Study Design: Multiple sequence analysis (MSA) of spike proteins of different SARS-CoVs were studied using Clustal Omega and ExPASy tools. Methodology: Bioinformatics, SDM and X-ray crystallographic data of the spike proteins from different CoVs including the current epidemic causing SARS-CoV-2 were analyzed. The advanced version of Clustal Omega was used for protein sequence analysis of different spike proteins from various CoVs and ExPASy tool was used for pI analysis. Results: Spike proteins in coronaviruses play important roles in mediating receptor binding, membrane fusion, and viral entry into human cells. Furthermore, nowadays all the vaccine development programmes are mainly focused on the SARS-CoV-2 spike protein only, as it plays the crucial, first step in the infection process. Therefore, the spike proteins of the SARS-related coronaviruses, the main determinant of coronavirus host specificity, are analyzed for their conserved motifs, RBD, RBM, etc. The recent epidemic causing strain, SARS-CoV-2, showed 2 dipeptide deletions and 4 peptide insertions ranging from tetra- to hepta-peptides in its spike protein as compared to its predecessor CoV-1. Most of the insertions are also found in the bat and pangolin CoVs except one unique tetrapeptide. The RBM region shows that the bats, pangolins and CoV-2 exhibit very similar to identical sequences. The overall analyses show that the latest SARS-CoV-2 is related to bats and more to pangolin-CoVs suggesting that the pangolins could be possibly the intermediate host. On the other hand, it is found that palm civet RBM sequences are highly related to CoV-1 and not CoV-2. Possibly the novel CoV-2 would have taken three insertions from bats and/or pangolins and the fourth insertion –PRRA- which is unique to SARS-CoV-2 is critically placed just in the S1/S2 cleavage region. The recently discovered G614 mutation (D614→G) in CoV-2, the most prevalent form in the global pandemic now, is found near the RBD towards the C-terminal. Placement of the unique tetrapeptide in the S1/S2 loop region and replacement with more positive charges on the spike protein which resulted in marked increase in the basicity of the SARS-CoV-2 spike protein may, possibly result in significant effects on the structure and function of the protein, possibly leading to rapid transmission. Conclusions: RBD and RBM regions of the spike proteins of SARS-CoV-1 and palm civet show very close identity to each other whereas the SARS-CoV-2, pangolin- and bat-CoVs exhibit very close identities in their RBD and RBM regions. The two crucial modifications in the spike protein of SARS-CoV-2, viz. a marked increase in the basicity of the protein and the insertion of a dibasic tetrapeptide (–PRRA-) at the critical S1/S2 cleavage point possibly make it to bind to the ACE2 receptor with higher affinity and get it cleaved by the host proteases more efficiently with subsequent effective internalization of the viral genome.


Author(s):  
Vaishali Chandel ◽  
Prem Prakash Sharma ◽  
Sibin Raj ◽  
Brijesh Rathi ◽  
Dhruv Kumar

<p>Due to unavailability of therapeutic approach for the novel coronavirus disease (COVID-19), the drug repurposing approach would be the fastest and efficient way of drug development against this deadly disease. We have applied bioinformatics approach for structure-based drug repurposing to identify the potential inhibitors through drug screening, molecular docking and molecular dynamics against non-structural protein 9 (Nsp9) replicase and spike proteins of the SARS-CoV-2 from the FDA approved drugs. We have performed virtual screening of 2000 FDA approved compounds including antiviral, anti-malarial, anti-parasitic, anti-fungal, anti-tuberculosis and active phytochemicals against Nsp9 replicase and spike proteins of SARS-CoV-2. Molecular docking was performed using Autodock-Vina. Selected hit compounds were identified based on their highest binding energy and favourable ADME profile. Notably, Conivaptan, an arginine vasopressin antagonist drug exhibited highest binding energy (-8.4 Kcal/mol) and maximum stability with the amino acid residues present on the active site of Nsp9 replicase. Additionally, Tegobuvir, a non-nucleoside inhibitor of hepatitis C virus exhibited maximum stability with highest binding energy (-8.1 Kcal/mol) on the active site of spike protein. Molecular docking scores were further validated with the molecular dynamics using Schrodinger, which supported strong stability of ligands with proteins at their active site through water bridges, hydrophobic interactions, H-bond. Overall, our findings highlight the fact that Conivaptan and Tegobuvir could be used to control the infection and propagation of SARS-CoV-2 targeting Nsp9 replicase and spike protein, respectively. Moreover, <i>in vitro</i> and <i>in vivo</i> validation of these findings will be helpful in bringing these molecules at the clinical settings.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Teresa Aydillo ◽  
Alexander Rombauts ◽  
Daniel Stadlbauer ◽  
Sadaf Aslam ◽  
Gabriela Abelenda-Alonso ◽  
...  

AbstractIn addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans are also susceptible to six other coronaviruses, for which consecutive exposures to antigenically related and divergent seasonal coronaviruses are frequent. Despite the prevalence of COVID-19 pandemic and ongoing research, the nature of the antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here we longitudinally profile the early humoral immune response against SARS-CoV-2 in hospitalized coronavirus disease 2019 (COVID-19) patients and quantify levels of pre-existing immunity to OC43, HKU1 and 229E seasonal coronaviruses, and find a strong back-boosting effect to conserved but not variable regions of OC43 and HKU1 betacoronaviruses spike protein. However, such antibody memory boost to human coronaviruses negatively correlates with the induction of IgG and IgM against SARS-CoV-2 spike and nucleocapsid protein. Our findings thus provide evidence of immunological imprinting by previous seasonal coronavirus infections that can potentially modulate the antibody profile to SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document