scholarly journals Periostin gene expression in neu-positive breast cancer cells is regulated by a FGFR signaling cross talk with TGFβ/PI3K/AKT pathways

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Cédrik Labrèche ◽  
David P. Cook ◽  
John Abou-Hamad ◽  
Julia Pascoal ◽  
Benjamin R. Pryce ◽  
...  

Abstract Background Breast cancer is a highly heterogeneous disease with multiple drivers and complex regulatory networks. Periostin (Postn) is a matricellular protein involved in a plethora of cancer types and other diseases. Postn has been shown to be involved in various processes of tumor development, such as angiogenesis, invasion, cell survival and metastasis. The expression of Postn in breast cancer cells has been correlated with a more aggressive phenotype. Despite extensive research, it remains unclear how epithelial cancer cells regulate Postn expression. Methods Using murine tumor models and human TMAs, we have assessed the proportion of tumor samples that have acquired Postn expression in tumor cells. Using biochemical approaches and tumor cell lines derived from Neu+ murine primary tumors, we have identified major regulators of Postn gene expression in breast cancer cell lines. Results Here, we show that, while the stromal compartment typically always expresses Postn, about 50% of breast tumors acquire Postn expression in the epithelial tumor cells. Furthermore, using an in vitro model, we show a cross-regulation between FGFR, TGFβ and PI3K/AKT pathways to regulate Postn expression. In HER2-positive murine breast cancer cells, we found that basic FGF can repress Postn expression through a PKC-dependent pathway, while TGFβ can induce Postn expression in a SMAD-independent manner. Postn induction following the removal of the FGF-suppressive signal is dependent on PI3K/AKT signaling. Conclusion Overall, these results reveal a novel regulatory mechanism and shed light on how breast tumor cells acquire Postn expression. This complex regulation is likely to be cell type and cancer specific as well as have important therapeutic implications.

2020 ◽  
Author(s):  
Lin He ◽  
Biyuan Zhang ◽  
Yuhua Song ◽  
Haiji Wang

Abstract Background: Sialic acid-binding lectin (cSBL) specifically kills tumor cells rather than healthy cells. Glycopolymer-coated nanoparticles are selectively ingested by tumor cells because they can interact with the enriched carbohydrate receptors located on the surface of tumor cells. In this context, we synthesized cSBL-modified fructose-coated nanoparticles (LMFN) and cSBL-modified glucose-coated nanoparticles (LMGN) to investigate their anticancer activity in various molecular subtypes of breast cancer cell lines. Methods: The syntheses of fructose-coated nanoparticles and glucose-coated nanoparticles were based on the chemicals of 1,2:4,5-di- O -isopropylidene- β -d-fructopyranose and 1,2:4,5-di- O -isopropylidene- β -d-glucopyranose, respectively. The carbodiimide-based method was employed to synthesize LMFN and LMGN. The antitumor mechanism was explored by cell cycle analysis with flowcytometry and the antitumor activity was assessed by cytotoxicity assay and multiple drug effects analysis. Results: The cytotoxicity assay showed that LMFN had robust antitumor activity against all breast cancer phenotype cell lines whereas LMGN was rarely efficacious to against human epidermal growth factor receptor 2-positive/overexpression (HER2+/overexpression) breast cancer cells. The intrinsic reason for these findings was that the overexpression of fructose transporter, GLUT5, was observed in all breast cancer subtype cell lines but only a paucity of glucose transporter, GLUT1, was expressed in HER2+/overexpression breast cancer cell lines that dampened the uptake of LMGN to these cells. The cell cycle analysis indicated that the anticancer activity of LMFN was achieved by arresting cell cycle in S phase. The multiple drug effects analysis suggested the synergistic effect in the combinations of LMFN and tamoxifen to kill estrogen receptor+ breast cancer cells and LMFN and trastuzumab to kill HER2+/overexpressed breast cancer cells. Conclusion: Our work pinpoints that LMFN may be a new-onset selection for molecularly targeted therapy of breast cancers and paves the way for establishing its clinical application in the future.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5139-5139 ◽  
Author(s):  
Abhishek Dhawan ◽  
Jens Friedrichs ◽  
Laura Bray ◽  
Lorenz C. Hofbauer ◽  
Manja Wobus ◽  
...  

Abstract Introduction The bone marrow microenvironment regulates the self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs), through a network dependent on cell-cell interaction. This interaction is mediated by morphogens, the extracellular matrix and cell adhesion molecules expressed and secreted by various cell types in the HSPC niche. Mesenchymal stromal cells (MSCs), as the major cellular component, maintain the stemness properties of the niche. The microenvironment thus becomes conducive for HSPCs to remain quiescent, thereby enabling long term self-renewal. Therefore, the safe haven in the bone marrow microenvironment and its constituent cell types can be targeted during tumorigenesis, thus making the niche neoplastic. Dissemination of breast cancer cells into the bone marrow has been described even in the early stages of the disease. The present study focuses on the influence of breast carcinomas on the genetic and functional profile of mesenchymal and hematopoietic progenitor cells of the bone marrow niche. Methods In vitro coculture models of breast cancer cell lines- MDA-MB231, MCF-7 and primary MSCs derived from the bone marrow of healthy donors were used in the study. Atomic- force microscopy based single-cell force spectroscopy (AFM-SCFS) and fluorescence based assays were used for cell adhesion experiments. Hydrogel based culture systems were used for 3-dimensional cocultures of breast cancer cells and MSCs. Hypoxic and normoxic culture conditions (0.5% and 20% oxygen respectively) were used for the experiments. Results The breast cancer cell lines caused a significant reduction in HSPC adhesion to MSCs (88% by MDA-MB 231 cells; p<0.005 and 73% by MCF-7 cells; p<0.005). AFM-SCFS studies also indicated a higher binding force between breast cancer cells and MSCs, as compared to HSPCs (MDA-MB231 cells-0.13nN, MCF-7 cells-0.074nN and HSPCs-0.05nN). MDA-MB231and MCF-7 cells express Intercellular adhesion molecule-1(ICAM-1), which has been shown to promote breast cancer metastasis (Hanlon et al, 2002; Rosette et al, 2005; Schröder C. et al, 2011). There was a significant difference in reduction of HSPC adhesion towards MSCs by ICAM-1 knockdown (ICAM-1 KD) tumor cells as compared to MDA-MB231 cells (84.83% by MDA-MB231 cells versus 28.11% by ICAM-1KD tumor cells, p<0.001). AFM-SCFS studies also showed a reduced binding force between ICAM-1 KD tumor cells and MSCs as compared to MDA-MB231cells (MDA-MB231 cells-0.14nN versus ICAM-1-KD tumor cells-0.05nN, p value<0.001). ICAM-1 KD studies thus showed that reduction in HSPC adhesion to MSCs by breast cancer cells was mediated through ICAM-1 signaling. A cytokine array was performed to investigate if breast cancer cell lines affect the cytokine profile of MSCs. The array showed altered expression of growth factors- Basic fibroblast growth factor (bFGF) and Platelet derived growth factor–beta (PDGF-BB) (2.2 fold upregulation and 0.5 fold downregulation in breast cancer cells- MSC cocultures respectively). Based on the array, a bFGF-mediated increase in the proliferation of MSCs and breast cancer cells in coculture was observed. The bFGF upregulation also caused an increased migration of MDA-MB231 cells towards MSCs in a transwell migration assay. An upregulation in the phosphorylation status of Akt was observed in breast cancer cells – MSC cocultures, as a downstream effect of upregulated bFGF levels. The bFGF-mediated increase in the proliferation of breast cancer cells and MSCs in coculture was shown to be dependent on the activation of PI3K-Akt pathway. The bFGF- mediated increase in the migration of MDA-MB231 cells towards MSCs was also inhibited upon addition of the PI3K blocker. Interestingly, the breast cancer cells caused a reduction in osteoblastic differentiation of MSCs by downregulation of PDGF-BB. Studies with 3-dimensional cocultures of breast cancer cells and MSCs also showed a reduction in osteoblastic differentiation of MSCs. Furthermore, long-term cocultures of breast cancer cells, HSPCs and MSCs showed reduced support for primitive HSPCs in the neoplastic niche. Conclusions These findings indicate a perturbed HSPC niche upon tumor invasion. The possible role of altered cytokine expression, consecutive downstream signaling in niche activation and bone turnover will be further studied using in vitro and in vivo approaches to recapitulate tumor micrometastases to the HSPC niche. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Paulina Dudzik ◽  
Sonia Elzbieta Trojan ◽  
Barbara Ostrowska ◽  
Małgorzata Lasota ◽  
Joanna Dulińska-Litewka ◽  
...  

The CD146 (also known as MCAM, MUC-18, Mel-CAM) was initially reported in 1987, as a protein crucial for the invasiveness of malignant melanoma. Recently, it has been confirmed that CD146 has been involved in progression and poor overall survival of many cancers including breast cancer. Importantly, in independent studies, CD146 was reported to be a trigger of epithelial to mesenchymal transition in breast cancer cells. The goal of our current study was to verify the potential involvement of epigenetic mechanism behind the regulation of CD146 expression in breast cancer cells, as it has been previously reported in prostate cancer. First, we analysed the response of breast cancer cell lines, differing in the initial CD146 mRNA and protein content, to epigenetic modifier, 5-aza-2-deoxycytidine, and subsequently the methylation status of CD146 gene promoter was investigated, using direct bisulfite sequencing. We observed that treatment with demethylating agent led to induction of CD146 expression in all analysed breast cancer cell lines, both at mRNA and protein level, what was accompanied by increased expression of selected mesenchymal markers. Importantly, CD146 gene promoter analysis showed aberrant CpG island methylation in 2 out of 3 studied breast cancer cells lines, indicating epigenetic regulation of CD146 gene expression. In conclusion, our study revealed, for the first time, that aberrant methylation maybe involved in expression control of CD146, a very potent EMT inducer in breast cancer cells. Altogether, the data obtained may provide the basis for novel therapies as well as diagnostic approaches enabling sensitive and very accurate detection of breast cancer cells.


2021 ◽  
Vol 22 (8) ◽  
pp. 4153
Author(s):  
Kutlwano R. Xulu ◽  
Tanya N. Augustine

Thromboembolic complications are a leading cause of morbidity and mortality in cancer patients. Cancer patients often present with an increased risk for thrombosis including hypercoagulation, so the application of antiplatelet strategies to oncology warrants further investigation. This study investigated the effects of anastrozole and antiplatelet therapy (aspirin/clopidogrel cocktail or atopaxar) treatment on the tumour responses of luminal phenotype breast cancer cells and induced hypercoagulation. Ethical clearance was obtained (M150263). Blood was co-cultured with breast cancer cell lines (MCF7 and T47D) pre-treated with anastrozole and/or antiplatelet drugs for 24 h. Hypercoagulation was indicated by thrombin production and platelet activation (morphological and molecular). Gene expression associated with the epithelial-to-mesenchymal transition (EMT) was assessed in breast cancer cells, and secreted cytokines associated with tumour progression were evaluated. Data were analysed with the PAST3 software. Our findings showed that antiplatelet therapies (aspirin/clopidogrel cocktail and atopaxar) combined with anastrozole failed to prevent hypercoagulation and induced evidence of a partial EMT. Differences in tumour responses that modulate tumour aggression were noted between breast cancer cell lines, and this may be an important consideration in the clinical management of subphenotypes of luminal phenotype breast cancer. Further investigation is needed before this treatment modality (combined hormone and antiplatelet therapy) can be considered for managing tumour associated-thromboembolic disorder.


2021 ◽  
Vol 22 (15) ◽  
pp. 7948
Author(s):  
Elham Jamshidifar ◽  
Faten Eshrati Yeganeh ◽  
Mona Shayan ◽  
Mohammad Tavakkoli Yaraki ◽  
Mahsa Bourbour ◽  
...  

In the present study, a magnetic niosomal nanocarrier for co-delivery of curcumin and letrozole into breast cancer cells has been designed. The magnetic NiCoFe2O4 core was coated by a thin layer of silica, followed by a niosomal structure, allowing us to load letrozole and curcumin into the silica layer and niosomal layer, respectively, and investigate their synergic effects on breast cancer cells. Furthermore, the nanocarriers demonstrated a pH-dependent release due to the niosomal structure at their outer layer, which is a promising behavior for cancer treatment. Additionally, cellular assays revealed that the nanocarriers had low cellular uptake in the case of non-tumorigenic cells (i.e., MCF-10A) and related high viability but high cellular uptake in cancer cell lines (i.e., MDA-MB-231 and SK-BR-3) and related low viability, which is evidenced in their high cytotoxicity against different breast cancer cell lines. The cytotoxicity of the letrozole/curcumin co-loaded nanocarrier is higher than that of the aqueous solutions of both drugs, indicating their enhanced cellular uptake in their encapsulated states. In particular, NiCoFe2O4@L-Silica-L@C-Niosome showed the highest cytotoxicity effects on MDA-MB-231 and SK-BR-3 breast cancer cells. The observed cytotoxicity was due to regulation of the expression levels of the studied genes in breast cancer cells, where downregulation was observed for the Bcl-2, MMP 2, MMP 9, cyclin D, and cyclin E genes while upregulation of the expression of the Bax, caspase-3, and caspase-9 genes was observed. The flow cytometry results also revealed that NiCoFe2O4@L-Silica-L@C-Niosome enhanced the apoptosis rate in both MDA-MB-231 and SK-BR-3 cells compared to the control samples. The findings of our research show the potential of designing magnetic niosomal formulations for simultaneous targeted delivery of both hydrophobic and hydrophilic drugs into cancer cells in order to enhance their synergic chemotherapeutic effects. These results could open new avenues into the future of nanomedicine and the development of theranostic agents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lisa Svartdal Normann ◽  
Miriam Ragle Aure ◽  
Suvi-Katri Leivonen ◽  
Mads Haugland Haugen ◽  
Vesa Hongisto ◽  
...  

AbstractHER2-positive (HER2 +) breast cancer patients that do not respond to targeted treatment have a poor prognosis. The effects of targeted treatment on endogenous microRNA (miRNA) expression levels are unclear. We report that responsive HER2 + breast cancer cell lines had a higher number of miRNAs with altered expression after treatment with trastuzumab and lapatinib compared to poorly responsive cell lines. To evaluate whether miRNAs can sensitize HER2 + cells to treatment, we performed a high-throughput screen of 1626 miRNA mimics and inhibitors in combination with trastuzumab and lapatinib in HER2 + breast cancer cells. We identified eight miRNA mimics sensitizing cells to targeted treatment, miR-101-5p, mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-106a-5p, and miR-744-3p. A higher expression of miR-101-5p predicted better prognosis in patients with HER2 + breast cancer (OS: p = 0.039; BCSS: p = 0.012), supporting the tumor-suppressing role of this miRNA. In conclusion, we have identified miRNAs that sensitize HER2 + breast cancer cells to targeted therapy. This indicates the potential of combining targeted drugs with miRNAs to improve current treatments for HER2 + breast cancers.


2021 ◽  
pp. 1-11
Author(s):  
Meng Li ◽  
Wenmin Zhang ◽  
Xiaodan Yang ◽  
Guo An ◽  
Wei Zhao

BACKGROUND: The voltage-gated calcium channel subunit alpha 2 delta 1 (α2δ1) is a functional tumor initial cells (TICs) marker for some solid cancer cells. This study aimed to investigate whether α2δ1 can be used as a potential TIC marker for breast cancer cells. METHODS: α2δ1+ and α2δ1- cells were identified and sorted from the breast cancer cell lines MDA-MB-231, MDA-MB-435s and ZR-75-1 by Immunofluorescence (IF) and Fluorescent-activated cell sorting (FACS) analyses. Spheroid formation in vitro and tumorigenesis in NOD/SCID mice were assessed to determine the self-renewal and serial transplantation abilities of these cells. Using a lentivirus infection system for α2δ1 in breast cancer cell lines, we determined the mRNA levels of stemnessassociated genes by quality real-time PCR (qRT-PCR). Boyden chamber and wounding assays were further performed to detect the migration of α2δ1 overexpression cells. Bioinformatics explored the relationship of molecular classification of breast cancer and drug resistance. RESULTS: α2δ1 presents on the cytomembrane of breast cancer cells, with a positive rate of 1.5–3%. The α2δ1+ cells in breast cancer cell lines have a stronger self-renewal ability and tumor initiating properties in vitro and in vivo. Overexpressing α2δ1 successfully enhanced the sphere-forming efficiency, and upregulated the expression of stemness-associated genes, and increased cell migration. However, seldom significant was available between estrogen receptor +/- (ER+/-), progesterone receptor (PR+/-), and Her2+/-. CONCLUSIONS: Breast cancer cells positive for the α2δ1 charactered tumor initiation, and α2δ1 is a potential TIC marker for breast cancer that further promotes the migration.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4350
Author(s):  
Jessica Castro ◽  
Giusy Tornillo ◽  
Gerardo Ceada ◽  
Beatriz Ramos-Neble ◽  
Marlon Bravo ◽  
...  

Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs’ development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Matthew Tegowski ◽  
Cheng Fan ◽  
Albert S. Baldwin

AbstractSeveral recent publications demonstrated that DRD2-targeting antipsychotics such as thioridazine induce proliferation arrest and apoptosis in diverse cancer cell types including those derived from brain, lung, colon, and breast. While most studies show that 10–20 µM thioridazine leads to reduced proliferation or increased apoptosis, here we show that lower doses of thioridazine (1–2 µM) target the self-renewal of basal-like breast cancer cells, but not breast cancer cells of other subtypes. We also show that all breast cancer cell lines tested express DRD2 mRNA and protein, regardless of thioridazine sensitivity. Further, DRD2 stimulation with quinpirole, a DRD2 agonist, promotes self-renewal, even in cell lines in which thioridazine does not inhibit self-renewal. This suggests that DRD2 is capable of promoting self-renewal in these cell lines, but that it is not active. Further, we show that dopamine can be detected in human and mouse breast tumor samples. This observation suggests that dopamine receptors may be activated in breast cancers, and is the first time to our knowledge that dopamine has been directly detected in human breast tumors, which could inform future investigation into DRD2 as a therapeutic target for breast cancer.


Sign in / Sign up

Export Citation Format

Share Document