scholarly journals OrthoFinder: phylogenetic orthology inference for comparative genomics

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
David M. Emms ◽  
Steven Kelly

AbstractHere, we present a major advance of the OrthoFinder method. This extends OrthoFinder’s high accuracy orthogroup inference to provide phylogenetic inference of orthologs, rooted gene trees, gene duplication events, the rooted species tree, and comparative genomics statistics. Each output is benchmarked on appropriate real or simulated datasets, and where comparable methods exist, OrthoFinder is equivalent to or outperforms these methods. Furthermore, OrthoFinder is the most accurate ortholog inference method on the Quest for Orthologs benchmark test. Finally, OrthoFinder’s comprehensive phylogenetic analysis is achieved with equivalent speed and scalability to the fastest, score-based heuristic methods. OrthoFinder is available at https://github.com/davidemms/OrthoFinder.

2018 ◽  
Author(s):  
David M. Emms ◽  
Steven Kelly

AbstractHere, we present a major advance of the OrthoFinder method. This extends OrthoFinder’s high accuracy orthogroup inference to provide phylogenetic inference of orthologs, rooted genes trees, gene duplication events, the rooted species tree, and comparative genomic statistics. Each output is benchmarked on appropriate real or simulated datasets and, where comparable methods exist, OrthoFinder is equivalent to or outperforms these methods. Furthermore, OrthoFinder is the most accurate ortholog inference method on the Quest for Orthologs benchmark test. Finally, OrthoFinder’s comprehensive phylogenetic analysis is achieved with equivalent speed and scalability to the fastest, score-based heuristic methods. OrthoFinder is available athttps://github.com/davidemms/OrthoFinder.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8813 ◽  
Author(s):  
Kyle T. David ◽  
Jamie R. Oaks ◽  
Kenneth M. Halanych

Background Eukaryotic genes typically form independent evolutionary lineages through either speciation or gene duplication events. Generally, gene copies resulting from speciation events (orthologs) are expected to maintain similarity over time with regard to sequence, structure and function. After a duplication event, however, resulting gene copies (paralogs) may experience a broader set of possible fates, including partial (subfunctionalization) or complete loss of function, as well as gain of new function (neofunctionalization). This assumption, known as the Ortholog Conjecture, is prevalent throughout molecular biology and notably plays an important role in many functional annotation methods. Unfortunately, studies that explicitly compare evolutionary processes between speciation and duplication events are rare and conflicting. Methods To provide an empirical assessment of ortholog/paralog evolution, we estimated ratios of nonsynonymous to synonymous substitutions (ω = dN/dS) for 251,044 lineages in 6,244 gene trees across 77 vertebrate taxa. Results Overall, we found ω to be more similar between lineages descended from speciation events (p < 0.001) than lineages descended from duplication events, providing strong support for the Ortholog Conjecture. The asymmetry in ω following duplication events appears to be largely driven by an increase along one of the paralogous lineages, while the other remains similar to the parent. This trend is commonly associated with neofunctionalization, suggesting that gene duplication is a significant mechanism for generating novel gene functions.


2016 ◽  
Author(s):  
Anil S. Thanki ◽  
Nicola Soranzo ◽  
Wilfried Haerty ◽  
Robert P. Davey

AbstractBackgroundGene duplication is a major factor contributing to evolutionary novelty, and the contraction or expansion of gene families has often been associated with morphological, physiological and environmental adaptations. The study of homologous genes helps us to understand the evolution of gene families. It plays a vital role in finding ancestral gene duplication events as well as identifying genes that have diverged from a common ancestor under positive selection. There are various tools available, such as MSOAR, OrthoMCL and HomoloGene, to identify gene families and visualise syntenic information between species, providing an overview of syntenic regions evolution at the family level. Unfortunately, none of them provide information about structural changes within genes, such as the conservation of ancestral exon boundaries amongst multiple genomes. The Ensembl GeneTrees computational pipeline generates gene trees based on coding sequences and provides details about exon conservation, and is used in the Ensembl Compara project to discover gene families.FindingsA certain amount of expertise is required to configure and run the Ensembl Compara GeneTrees pipeline via command line. Therefore, we have converted the command line Ensembl Compara GeneTrees pipeline into a Galaxy workflow, called GeneSeqToFamily, and provided additional functionality. This workflow uses existing tools from the Galaxy ToolShed, as well as providing additional wrappers and tools that are required to run the workflow.ConclusionsGeneSeqToFamily represents the Ensembl Compara pipeline as a set of interconnected Galaxy tools, so they can be run interactively within the Galaxy’s user-friendly workflow environment while still providing the flexibility to tailor the analysis by changing configurations and tools if necessary. Additional tools allow users to subsequently visualise the gene families produced by the workflow, using the Aequatus.js interactive tool, which has been developed as part of the Aequatus software project.


2017 ◽  
Author(s):  
David M. Emms ◽  
Steven Kelly

AbstractThe correct interpretation of a phylogenetic tree is dependent on it being correctly rooted. A gene duplication event at the base of a clade of species is synapamorphic, and thus excludes the root of the species tree from that clade. We present STRIDE, a fast, effective, and outgroup-free method for species tree root inference from gene duplication events. STRIDE identifies sets of well-supported gene duplication events from cohorts of gene trees, and analyses these events to infer a probability distribution over an unrooted species tree for the location of the true root. We show that STRIDE infers the correct root of the species tree for a large range of simulated and real species sets. We demonstrate that the novel probability model implemented in STRIDE can accurately represent the ambiguity in species tree root assignment for datasets where information is limited. Furthermore, application of STRIDE to inference of the origin of the eukaryotic tree resulted in a root probability distribution that was consistent with, but unable to distinguish between, leading hypotheses for the origin of the eukaryotes. In summary, STRIDE is a fast, scalable, and effective method for species tree root inference from genome scale data.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1190
Author(s):  
Yuqi Huang ◽  
Minghao Sun ◽  
Lenan Zhuang ◽  
Jin He

Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.


Zootaxa ◽  
2018 ◽  
Vol 4514 (4) ◽  
pp. 487
Author(s):  
ANDRÉS R. ACOSTA-GALVIS ◽  
JEFFREY W. STREICHER ◽  
LUIGI MANUELLI ◽  
TRAVIS CUDDY ◽  
RAFAEL O. DE SÁ

Among New World direct-developing frogs belonging to the clade Brachycephaloidea (= Terraranae), there are several genera with uncertain phylogenetic placements. One notable example is the genus Niceforonia Goin & Cochran 1963, which includes three species that are endemic to Colombia. Three specimens of the species Niceforonia nana were collected and for the first time the genus is included in a molecular phylogenetic analysis of mitochondrial (mtDNA; 12S and 16S) and nuclear (nucDNA; TYR and RAG1) markers. Molecular phylogenetic inference based on concatenated and separate mtDNA and nucDNA analyses recovered Niceforonia nana nested within Hypodactylus Hedges et al. 2008, rendering the latter genus paraphyletic. Consequently, herein we place the genus Hypodactylus in the synonymy of Niceforonia to resolve the paraphyly and place Niceforonia in the subfamily Hypodactylinae. Based on our revised concept of the genus Niceforonia we conducted preliminary morphological comparisons using specimens and literature descriptions. Finally, Nicefornia nana is quite divergent from other species of Niceforonia (uncorrected genetic distances of ca. 10% 16S and 7% TYR) suggesting that further taxonomic revision may be warranted. 


2012 ◽  
Vol 92 (4) ◽  
pp. 1543-1576 ◽  
Author(s):  
Anthony M. Carter

Placenta has a wide range of functions. Some are supported by novel genes that have evolved following gene duplication events while others require acquisition of gene expression by the trophoblast. Although not expressed in the placenta, high-affinity fetal hemoglobins play a key role in placental gas exchange. They evolved following duplications within the beta-globin gene family with convergent evolution occurring in ruminants and primates. In primates there was also an interesting rearrangement of a cassette of genes in relation to an upstream locus control region. Substrate transfer from mother to fetus is maintained by expression of classic sugar and amino acid transporters at the trophoblast microvillous and basal membranes. In contrast, placental peptide hormones have arisen largely by gene duplication, yielding for example chorionic gonadotropins from the luteinizing hormone gene and placental lactogens from the growth hormone and prolactin genes. There has been a remarkable degree of convergent evolution with placental lactogens emerging separately in the ruminant, rodent, and primate lineages and chorionic gonadotropins evolving separately in equids and higher primates. Finally, coevolution in the primate lineage of killer immunoglobulin-like receptors and human leukocyte antigens can be linked to the deep invasion of the uterus by trophoblast that is a characteristic feature of human placentation.


Sign in / Sign up

Export Citation Format

Share Document