Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max) reveals gene duplication events and specificity of gene members linked to development and stress conditions

Author(s):  
José Hélio Costa ◽  
André Luiz Maia Roque ◽  
Shahid Aziz ◽  
Clesivan Pereira dos Santos ◽  
Thais Andrade Germano ◽  
...  
2016 ◽  
Author(s):  
Anil S. Thanki ◽  
Nicola Soranzo ◽  
Wilfried Haerty ◽  
Robert P. Davey

AbstractBackgroundGene duplication is a major factor contributing to evolutionary novelty, and the contraction or expansion of gene families has often been associated with morphological, physiological and environmental adaptations. The study of homologous genes helps us to understand the evolution of gene families. It plays a vital role in finding ancestral gene duplication events as well as identifying genes that have diverged from a common ancestor under positive selection. There are various tools available, such as MSOAR, OrthoMCL and HomoloGene, to identify gene families and visualise syntenic information between species, providing an overview of syntenic regions evolution at the family level. Unfortunately, none of them provide information about structural changes within genes, such as the conservation of ancestral exon boundaries amongst multiple genomes. The Ensembl GeneTrees computational pipeline generates gene trees based on coding sequences and provides details about exon conservation, and is used in the Ensembl Compara project to discover gene families.FindingsA certain amount of expertise is required to configure and run the Ensembl Compara GeneTrees pipeline via command line. Therefore, we have converted the command line Ensembl Compara GeneTrees pipeline into a Galaxy workflow, called GeneSeqToFamily, and provided additional functionality. This workflow uses existing tools from the Galaxy ToolShed, as well as providing additional wrappers and tools that are required to run the workflow.ConclusionsGeneSeqToFamily represents the Ensembl Compara pipeline as a set of interconnected Galaxy tools, so they can be run interactively within the Galaxy’s user-friendly workflow environment while still providing the flexibility to tailor the analysis by changing configurations and tools if necessary. Additional tools allow users to subsequently visualise the gene families produced by the workflow, using the Aequatus.js interactive tool, which has been developed as part of the Aequatus software project.


Genome ◽  
2002 ◽  
Vol 45 (4) ◽  
pp. 693-701 ◽  
Author(s):  
Cheryl Granger ◽  
Virginia Coryell ◽  
Anupama Khanna ◽  
Paul Keim ◽  
Lila Vodkin ◽  
...  

Expressed sequence tags (ESTs) exhibiting homology to a BURP domain containing gene family were identified from the Glycine max (L.) Merr. EST database. These ESTs were assembled into 16 contigs of variable sizes and lengths. Consistent with the structure of known BURP domain containing proteins, the translation products exhibit a modular structure consisting of a C-terminal BURP domain, an N-terminal signal sequence, and a variable internal region. The soybean family members exhibit 35–98% similarity in a ~100-amino-acid C-terminal region, and a phylogenetic tree constructed using this region shows that some soybean family members group together in closely related pairs, triplets, and quartets, whereas others remain as singletons. The structure of these groups suggests that multiple gene duplication events occurred during the evolutionary history of this family. The depth and diversity of G. max EST libraries allowed tissue-specific expression patterns of the putative soybean BURPs to be examined. Consistent with known BURP proteins, the newly identified soybean BURPs have diverse expression patterns. Furthermore, putative paralogs can have both spatially and quantitatively distinct expression patterns. We discuss the functional and evolutionary implications of these findings, as well as the utility of EST-based analyses for identifying and characterizing gene families.Key words: BURP domain, expressed sequence tag, gene duplication, Glycine max.


2020 ◽  
Vol 21 (5) ◽  
pp. 1581 ◽  
Author(s):  
Zheng Li ◽  
Dan Liu ◽  
Yu Xia ◽  
Ziliang Li ◽  
Doudou Jing ◽  
...  

The WUSCHEL-related homeobox (WOX) is a family of plant-specific transcription factors, with important functions, such as regulating the dynamic balance of division and differentiation of plant stem cells and plant organ development. We identified 14 distinct TaWOX genes in the wheat (Triticum aestivum L.) genome, based on a genome-wide scan approach. All of the genes under evaluation had positional homoeologs on subgenomes A, B and D except TaWUS and TaWOX14. Both TaWOX14a and TaWOX14d had a paralogous copy on the same genome due to tandem duplication events. A phylogenetic analysis revealed that TaWOX genes could be divided into three groups. We performed functional characterization of TaWOX genes based on the evolutionary relationships among the WOX gene families of wheat, rice (Oryza sativa L.), and Arabidopsis. An overexpression analysis of TaWUS in Arabidopsis revealed that it affected the development of outer floral whorl organs. The overexpression analysis of TaWOX9 in Arabidopsis revealed that it promoted the root development. In addition, we identified some interaction between the TaWUS and TaWOX9 proteins by screening wheat cDNA expression libraries, which informed directions for further research to determine the functions of TaWUS and TaWOX9. This study represents the first comprehensive data on members of the WOX gene family in wheat.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 362 ◽  
Author(s):  
Song Wang ◽  
Kai Ouyang ◽  
Kai Wang

Trehalose biosynthesis enzyme homologues in plants contain two families, trehalose-6-phosphate synthases (TPSs) and trehalose-6-phosphate phosphatases (TPPs). Both families participate in trehalose synthesis and a variety of stress-resistance processes. Here, nine BdTPS and ten BdTPP genes were identified based on the Brachypodium distachyon genome, and all genes were classified into three classes. The Class I and Class II members differed substantially in gene structures, conserved motifs, and protein sequence identities, implying varied gene functions. Gene duplication analysis showed that one BdTPS gene pair and four BdTPP gene pairs are formed by duplication events. The value of Ka/Ks (non-synonymous/synonymous) was less than 1, suggesting purifying selection in these gene families. The cis-elements and gene interaction network prediction showed that many family members may be involved in stress responses. The quantitative real-time reverse transcription (qRT-PCR) results further supported that most BdTPSs responded to at least one stress or abscisic acid (ABA) treatment, whereas over half of BdTPPs were downregulated after stress treatment, implying that BdTPSs play a more important role in stress responses than BdTPPs. This work provides a foundation for the genome-wide identification of the B. distachyon TPS–TPP gene families and a frame for further studies of these gene families in abiotic stress responses.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 125-133 ◽  
Author(s):  
Peter W. H. Holland ◽  
Jordi Garcia-Fernàndez ◽  
Nic A. Williams ◽  
Arend Sidow

All vertebrates possess anatomical features not seen in their closest living relatives, the protochordates (tunicates and amphioxus). Some of these features depend on developmental processes or cellular behaviours that are again unique to vertebrates. We are interested in the genetic changes that may have permitted the origin of these innovations. Gene duplication, followed by functional divergence of new genes, may be one class of mutation that permits major evolutionary change. Here we examine the hypothesis that gene duplication events occurred close to the origin and early radiation of the vertebrates. Genome size comparisons are compatible with the occurrence of duplications close to vertebrate origins; more precise insight comes from cloning and phylogenetic analysis of gene families from amphioxus, tunicates and vertebrates. Comparisons of Hox gene clusters, other homeobox gene families, Wnt genes and insulin-related genes all indicate that there was a major phase of gene duplication close to vertebrate origins, after divergence from the amphioxus lineage; we suggest there was probably a second phase of duplication close to jawed vertebrate origins. From amphioxus and vertebrate homeobox gene expression patterns, we suggest that there are multiple routes by which new genes arising from gene duplication acquire new functions and permit the evolution of developmental innovations.


2021 ◽  
Author(s):  
Dili Lai ◽  
Jun Yan ◽  
Ailing He ◽  
Guoxing Xue ◽  
Hao Yang ◽  
...  

Abstract Foxtail millet (Setaria italica) is rich in nutrients and extremely beneficial to human health. We identified and comprehensively analyzed 89 MADS-box genes in the foxtail millet genome. According to the classification of MADS-box genes in Arabidopsis thaliana and rice, the SiMADS-box genes were divided into M-type (37) and MIKC-type (52). During evolution, the differentiation of MIKC-type MADS-box genes occurred before that of monocotyledons and dicotyledons. The SiMADS-box gene structure has undergone much differentiation, and the number of exons in the MIKC-type subfamily is much greater than that in the M-type subfamily. Analysis of gene duplication events revealed that MIKC-type MADS-box gene fragment duplication accounted for the vast majority of gene duplication events, and MIKC-type MADS-box genes played a major role in the amplification of SiMADS-box genes. Collinearity analysis showed highest collinearity between foxtail millet and maize MADS-box genes. Analysis of tissue-specific expression showed that SiMADS-box genes are highly expressed throughout the grain-filling process. Expression analysis of SiMADS-box genes under eight different abiotic stresses revealed many stress-tolerant genes, with induced expression of SiMADS33 and SiMADS78 under various stresses warranting further attention. Further, some SiMADS-box proteins may interact to cope with external stress. This study provides insights for MADS-box gene mining and molecular breeding of foxtail millet in the future.


2005 ◽  
Vol 79 (22) ◽  
pp. 14095-14101 ◽  
Author(s):  
Karsten Suhre

ABSTRACT Gene duplication is key to molecular evolution in all three domains of life and may be the first step in the emergence of new gene function. It is a well-recognized feature in large DNA viruses but has not been studied extensively in the largest known virus to date, the recently discovered Acanthamoeba polyphaga Mimivirus. Here, I present a systematic analysis of gene and genome duplication events in the mimivirus genome. I found that one-third of the mimivirus genes are related to at least one other gene in the mimivirus genome, either through a large segmental genome duplication event that occurred in the more remote past or through more recent gene duplication events, which often occur in tandem. This shows that gene and genome duplication played a major role in shaping the mimivirus genome. Using multiple alignments, together with remote-homology detection methods based on Hidden Markov Model comparison, I assign putative functions to some of the paralogous gene families. I suggest that a large part of the duplicated mimivirus gene families are likely to interfere with important host cell processes, such as transcription control, protein degradation, and cell regulatory processes. My findings support the view that large DNA viruses are complex evolving organisms, possibly deeply rooted within the tree of life, and oppose the paradigm that viral evolution is dominated by lateral gene acquisition, at least in regard to large DNA viruses.


2021 ◽  
Author(s):  
Tzachi Hagai ◽  
Evgeny Fraimovitch

Gene duplication is thought to be a central mechanism in evolution to gain new functions, but gene families vary greatly in their rates of gene duplication and long-term retention. Here, we discover a link between the promoter architecture of vertebrate genes and their rate of duplication: Genes that harbor CpG Islands in their promoters (CGI genes) - nearly 60% of our genes - have rarely duplicated in recent evolutionary times, and most CGI gene duplication events predate the emergence of CGI as a major regulatory element of vertebrate genes. In contrast, CGI-less genes predominate duplications that have occurred since the divergence of vertebrates. Furthermore, CGI-less paralogs are transcriptionally more divergent than CGI paralogs, even when comparing CGI and CGI-less paralogs that have duplicated at similar evolutionary times - suggesting greater capacity of CGI-less promoters to enable divergence in expression. This higher divergence between CGI-less paralogs is also reflected in lower similarity of transcription factors that bind to the promoters of CGI-less paralog pairs in comparison with CGI paralogs. Finally, CGI-less paralogs have a greater tendency to sub- and neo-functionalize, and they transcriptionally diversify faster following duplication. Our results highlight the links between promoter architecture, gene expression plasticity and their impact on gene expansion, and unravel an unappreciated role of CGI elements in shaping genome evolution.


Sign in / Sign up

Export Citation Format

Share Document