scholarly journals The chromatin remodeler Ino80 mediates RNAPII pausing site determination

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Youngseo Cheon ◽  
Sungwook Han ◽  
Taemook Kim ◽  
Daehee Hwang ◽  
Daeyoup Lee

Abstract Background Promoter-proximal pausing of RNA polymerase II (RNAPII) is a critical step for the precise regulation of gene expression. Despite the apparent close relationship between promoter-proximal pausing and nucleosome, the role of chromatin remodeler governing this step has mainly remained elusive. Results Here, we report highly confined RNAPII enrichments downstream of the transcriptional start site in Saccharomyces cerevisiae using PRO-seq experiments. This non-uniform distribution of RNAPII exhibits both similar and different characteristics with promoter-proximal pausing in Schizosaccharomyces pombe and metazoans. Interestingly, we find that Ino80p knockdown causes a significant upstream transition of promoter-proximal RNAPII for a subset of genes, relocating RNAPII from the main pausing site to the alternative pausing site. The proper positioning of RNAPII is largely dependent on nucleosome context. We reveal that the alternative pausing site is closely associated with the + 1 nucleosome, and nucleosome architecture around the main pausing site of these genes is highly phased. In addition, Ino80p knockdown results in an increase in fuzziness and a decrease in stability of the + 1 nucleosome. Furthermore, the loss of INO80 also leads to the shift of promoter-proximal RNAPII toward the alternative pausing site in mouse embryonic stem cells. Conclusions Based on our collective results, we hypothesize that the highly conserved chromatin remodeler Ino80p is essential in establishing intact RNAPII pausing during early transcription elongation in various organisms, from budding yeast to mouse.

2021 ◽  
Author(s):  
Youngseo Cheon ◽  
Sungwook Han ◽  
Taemook Kim ◽  
Daeyoup Lee

Promoter-proximal pausing of RNA polymerase II (RNAPII) is a critical step in early transcription elongation for the precise regulation of gene expression. Here, we provide evidence of promoter-proximal pausing-like distributions of RNAPII in S. cerevisiae. We found that genes bearing an alternative pausing site utilize Ino80p to properly localize RNAPII pausing at the first pausing site and to suppress the accumulation of RNAPII at the second pausing site, which is tightly associated with the +1 nucleosome. This alternative pausing site determination was dependent on the remodeling activity of Ino80p to modulate the +1 nucleosome position and might be controlled synergistically with Spt4p. Furthermore, we observed similar Ino80-dependent RNAPII pausing in mouse embryonic stem cells (mESCs). Based on our collective results, we hypothesize that the chromatin remodeler Ino80 plays a highly conserved role in regulating early RNAPII elongation to establish intact pausing.


2006 ◽  
Vol 188 (8) ◽  
pp. 3134-3137 ◽  
Author(s):  
Lynn F. Wood ◽  
Dennis E. Ohman

ABSTRACT Expression of mucD, encoding a homologue of the HtrA(DegP) family of endoserine proteases, was investigated in Pseudomonas aeruginosa. Expressed from the algT-mucABCD operon, MucD was detected in mucoid (FRD1) and nonmucoid (PAO1) parental strains and also when polar insertions were placed upstream in algT or mucB. A transcriptional start site for a mucD promoter (PmucD) was mapped within mucC. Expression of single-copy mucD217, encoding MucD altered in the protease motif (S217A), was defective in temperature resistance and alginate gene regulation.


2020 ◽  
Author(s):  
Thomas W. Sheahan ◽  
Viktoria Major ◽  
Kimberly M. Webb ◽  
Elana Bryan ◽  
Philipp Voigt

AbstractThe closely related acetyltransferases CBP and p300 are key regulators of gene expression in metazoans. CBP/p300 acetylate several specific lysine residues within nucleosomes, including histone H3 lysine 27 (H3K27), a hallmark of active enhancers and promoters. However, it has remained largely unclear how specificity of CBP/p300 towards H3K27 is achieved. Here we show that the TAZ2 domain of CBP is required for efficient acetylation of H3K27, while curbing activity towards other lysine residues within nucleosomes. We find that TAZ2 is a sequence-independent DNA binding module, promoting interaction between CBP and nucleosomes, thereby enhancing enzymatic activity and regulating substrate specificity of CBP. TAZ2 is further required to stabilize CBP binding to chromatin in mouse embryonic stem cells, facilitating specificity towards H3K27 and modulating gene expression. These findings reveal a crucial role of TAZ2 in regulating H3K27ac, while highlighting the importance of correct site-specific acetylation for proper regulation of gene expression.


2018 ◽  
Vol 1 (3) ◽  
pp. e201800085 ◽  
Author(s):  
Constantine Mylonas ◽  
Peter Tessarz

The conserved and essential histone chaperone, facilitates chromatin transcription (FACT), reorganizes nucleosomes during DNA transcription, replication, and repair and ensures both efficient elongation of RNA Pol II and nucleosome integrity. In mammalian cells, FACT is a heterodimer, consisting of SSRP1 and SUPT16. Here, we show that in contrast to yeast, FACT accumulates at the transcription start site of genes reminiscent of RNA polymerase II profile. Depletion of FACT in mouse embryonic stem cells leads to deregulation of developmental and pro-proliferative genes concomitant with hyper-proliferation of mES cells. Using MNase-seq, Assay for Transposase-Accessible Chromatin sequencing, and nascent elongating transcript sequencing, we show that up-regulation of genes coincides with loss of nucleosomes upstream of the transcription start site and concomitant increase in antisense transcription, indicating that FACT impacts the promoter architecture to regulate the expression of these genes. Finally, we demonstrate a role for FACT in cell fate determination and show that FACT depletion primes embryonic stem cells for the neuronal lineage.


1990 ◽  
Vol 10 (12) ◽  
pp. 6335-6347
Author(s):  
E Maldonado ◽  
I Ha ◽  
P Cortes ◽  
L Weis ◽  
D Reinberg

Human transcription factor TFIID, the TATA-binding protein, was partially purified to a form capable of associating stably with the TATA motif of the adenovirus major late promoter. Binding of the human and yeast TFIID to the TATA motif was stimulated by TFIIA. TFIIA is an integral part of a complex capable of binding other transcription factors. A complex formed with human TFIID and TFIIA (DA complex) was specifically recognized by TFIIB. We found that TFIIB activity was contained in a single polypeptide of 32 kDa and that this polypeptide participated in transcription and was capable of binding to the DA complex to form the DAB complex. Formation of the DAB complex required TFIIA, TFIID, and sequences downstream of the transcriptional start site; however, the DA complex could be formed on an oligonucleotide containing only the adenovirus major late promoter TATA motif. Using anti-TFIIB antibodies and reagents that affect the stability of a transcription-competent complex, we found that yeast and human TFIID yielded DAB complexes with different stabilities.


1990 ◽  
Vol 10 (12) ◽  
pp. 6335-6347 ◽  
Author(s):  
E Maldonado ◽  
I Ha ◽  
P Cortes ◽  
L Weis ◽  
D Reinberg

Human transcription factor TFIID, the TATA-binding protein, was partially purified to a form capable of associating stably with the TATA motif of the adenovirus major late promoter. Binding of the human and yeast TFIID to the TATA motif was stimulated by TFIIA. TFIIA is an integral part of a complex capable of binding other transcription factors. A complex formed with human TFIID and TFIIA (DA complex) was specifically recognized by TFIIB. We found that TFIIB activity was contained in a single polypeptide of 32 kDa and that this polypeptide participated in transcription and was capable of binding to the DA complex to form the DAB complex. Formation of the DAB complex required TFIIA, TFIID, and sequences downstream of the transcriptional start site; however, the DA complex could be formed on an oligonucleotide containing only the adenovirus major late promoter TATA motif. Using anti-TFIIB antibodies and reagents that affect the stability of a transcription-competent complex, we found that yeast and human TFIID yielded DAB complexes with different stabilities.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Elmar Nurmemmedov ◽  
Santosh Kesari

Abstract Glioblastoma is a lethal brain tumor with high recurrence rate. CHD4 overexpression, which drives resistance to DNA damage, is one of the major sources of recurrence. Since standard GBM treatments like radiation and temozolomide chemotherapy create DNA damage, inhibition of CHD4 offers a new therapeutic option for resensitizing GBM. CHD4 is a ubiquitously expressed ATP-dependent chromatin remodeler, which plays a crucial role in epigenetic regulation of gene expression and in DNA damage repair. Structurally, CHD4 contains an HMG-like domain, PHD domains, two chromodomains, a catalytic ATPase module, two domains of unknown function (DUF) and a C-terminal domain CHDCT2. Currently, no specific inhibitors targeting this chromatin remodeler have been reported yet. We aim to develop the first-in-class inhibitor targeting chromo-domain of CHD4. We have performed in silico screens to identify small molecules binding to the chromo-domains of CHD4. We present our growing in vitro data demonstrating biophysical properties and mechanism-of-action of these novel inhibitors. We expect that the experiments proposed here will result in the development of the first-in-class CHD4 inhibitor which can be used in the future not only to better study the physiological role of CHD4 but also to determine its potential as a novel targeted therapy for GBM.


2019 ◽  
Author(s):  
Slawomir Kubik ◽  
Drice Challal ◽  
Maria Jessica Bruzzone ◽  
René Dreos ◽  
Stefano Mattarocci ◽  
...  

AbstractPrecise nucleosome organization at eukaryotic promoters is thought to be generated by multiple chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated analysis of chromatin remodeler binding and nucleosome displacement activity following rapid remodeler depletion, we investigate the interplay between these enzymes and their impact on transcription in budding yeast. We show that many promoters are acted upon by multiple CRs that operate either cooperatively or in opposition to position the key transcription start site-associated +1 nucleosome. Functional assays suggest that +1 nucleosome positioning often reflects a trade-off between maximizing RNA Polymerase II recruitment and minimizing transcription initiation at incorrect sites. Finally, we show that nucleosome movement following CR inactivation usually results from the activity of another CR and that in the absence of any remodeling activity +1 nucleosomes maintain their positions. Our results provide a detailed picture of fundamental mechanisms linking promoter nucleosome architecture to transcription initiation.


1998 ◽  
Vol 180 (10) ◽  
pp. 2599-2608 ◽  
Author(s):  
Anne Buchet ◽  
Knut Eichler ◽  
Marie-Andrée Mandrand-Berthelot

ABSTRACT The divergent structural operons caiTABCDE andfixABCX of Escherichia coli are required for anaerobic carnitine metabolism. Transcriptional monocopylacZ fusion studies showed that both operons are coexpressed during anaerobic growth in the presence of carnitine, respond to common environmental stimuli (like glucose and nitrate), and are modulated positively by the same general regulators, CRP and FNR, and negatively by H-NS. Overproduction of the CaiF specific regulatory protein mediating the carnitine signal restored induction in anfnr mutant, corresponding to its role as the primary target for anaerobiosis. Transcript analysis identified two divergent transcription start points initiating 289 bp apart. DNase I footprinting revealed three sites with various affinities for the binding of the cAMP-CRP complex inside this regulatory region. Site-directed mutagenesis experiments indicated that previously reported perfect CRP motif 1, centered at −41.5 of the caitranscriptional start site, plays a direct role in the solecai activation. In contrast, mutation in CRP site 2, positioned at −69.5 of the fix promoter, caused only a threefold reduction in fix expression. Thus, the role of the third CRP site, located at −126.5 of fix, might be to reinforce the action of site 2. A critical 50-bp cis-acting sequence overlapping the fix mRNA start site was found, by deletion analysis, to be necessary for cai transcription. This region is thought to be involved in transduction of the signal mediated by the CaiF regulator.


2019 ◽  
Vol 39 (24) ◽  
Author(s):  
Zhuojuan Luo ◽  
Xiaoxu Liu ◽  
Hao Xie ◽  
Yan Wang ◽  
Chengqi Lin

ABSTRACT The roles of the MYC transcription factor in transcriptional regulation have been studied intensively. However, the general mechanism underlying the recruitment of MYC to chromatin is less clear. Here, we found that the Krüppel-like transcription factor ZFP281 plays important roles in recruiting MYC to active promoters in mouse embryonic stem cells. At the genome scale, ZFP281 is broadly associated with MYC, and the depletion of ZFP281 significantly reduces the levels of MYC and RNA polymerase II at the ZFP281- and MYC-cobound genes. Specially, we found that recruitment is required for the regulation of the Lin28a oncogene and pri-let-7 transcription. Our results therefore suggest a major role of ZFP281 in recruiting MYC to chromatin and the integration of ZFP281 and the MYC/LIN28A/Let-7 loop into a multilevel circuit.


Sign in / Sign up

Export Citation Format

Share Document