scholarly journals Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiaoning He ◽  
Yongfu Yang ◽  
Shihui Yang ◽  
Bryon S. Donohoe ◽  
Stefanie Van Wychen ◽  
...  
Author(s):  
Hiroaki Negoro ◽  
Atsushi Kotaka ◽  
Hiroki Ishida

ABSTRACT Saccharomyces cerevisiae produces organic acids including malate during alcohol fermentation. Since malate contributes to the pleasant flavor of sake, high-malate-producing yeast strain No. 28 and No. 77 have been developed by the Brewing Society of Japan. In this study, the genes responsible for the high malate phenotype in these strains were investigated. We had found previously that the deletion of components of the glucose induced degradation-deficient (GID) complex led to high malate production in yeast. Upon examining GID protein-coding genes in yeast strain No. 28 and No. 77, a nonsense homozygous mutation of GID4 in strain No. 28, and of GID2 in strain No. 77, were identified as the cause of high malate production. Furthermore, complementary tests of these mutations indicated that the heterozygous nonsense mutation in GID2 was recessive. In contrast, the heterozygous nonsense mutation in GID4 was considered semi-dominant.


2012 ◽  
Vol 114 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Shunichi Nakayama ◽  
Ken Tabata ◽  
Takahiro Oba ◽  
Kenichi Kusumoto ◽  
Shinji Mitsuiki ◽  
...  

2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Bruna Inez Carvalho Figueiredo ◽  
Margarete Alice Fontes Saraiva ◽  
Paloma Patrick de Souza Pimenta ◽  
Miriam Conceição de Souza Testasicca ◽  
Geraldo Magela Santos Sampaio ◽  
...  

ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in the use of breeding/hybridization techniques to generate yeast strains that would be appropriate for producing new lager beers by exploring the capacity of cachaça yeast strains to flocculate and to ferment maltose at low temperature, with the concomitant production of flavoring compounds.


2018 ◽  
Vol 13 (1) ◽  
pp. 219-228 ◽  
Author(s):  
Kasmi Mariam ◽  
Elleuch Lobna ◽  
Abidi Haifa ◽  
Cherni Yassmine ◽  
Hosni Cyrine ◽  
...  

Abstract In this study the biotreatability of Jebel Chakir landfill leachate (Tunisia) using a mixture of dairy industry reject (bactofugate) and Aloe sp. leaf gel was evaluated. The effect of Aloe gel fermentation using Saccharomyces cerevisiae yeast strain was investigated against some selected bacterial and fungal strains. The inoculation size effect of the treatment mixtures (2, 6, 10 and 12%) in the treatment efficiency was also studied. The obtained results showed that when natural Aloe gel and bactofugate mixtures were used the recorded chemical oxygen demand removal rates exceeded 56% within 48 h of treatment. Whereas, the use of the fermented Aloe gel in the treatment mixtures has promoted the organic matter removal to reach 72%.


1954 ◽  
Vol 142 (909) ◽  
pp. 427-436 ◽  

Phenol lowers the growth rate of a strain of Saccharomyces cerevisiae without causing any appreciable initial lag in growth. Improvement in the growth rate on repeated subculture (‘training’) is not very marked. In contrast, thymol induces a long initial lag which is rapidly eliminated by training. The adapted yeast strain shows a curve of lag against concentration displaced to considerably higher concentrations. As the yeast becomes adapted to thymol it loses the power of sporulation progressively, and recovers it, again gradually, as the adaptation is lost on continued passage through media without thymol. The development of resistance may be adaptive or mutational, though reasons are given for considering the former more probable.


1989 ◽  
Vol 9 (9) ◽  
pp. 4064-4068 ◽  
Author(s):  
C Wittenberg ◽  
S I Reed

Whereas the Cdc28 protein kinase of the budding yeast Saccharomyces cerevisiae plays an essential role in cell cycle progression during the G1 interval, a function in the progression from the G2 interval into M phase has been inferred for its homologs, including the Cdc2Hs protein kinase of humans. To better understand these apparently disparate roles, we constructed a yeast strain in which the resident CDC28 gene was replaced by its human homolog, CDC2Hs. This transgenic yeast strain was able to perform the G1 functions attributed to the Cdc28 protein kinase, including the ability to grow and divide normally, to respond to environmental signals that induce G1 arrest, and to regulate the Cdc2Hs protein kinase appropriately in response to these signals.


2012 ◽  
Vol 39 (11) ◽  
pp. 1673-1683 ◽  
Author(s):  
Viviane Castelo Branco Reis ◽  
André Moraes Nicola ◽  
Osmar de Souza Oliveira Neto ◽  
Vinícius Daniel Ferreira Batista ◽  
Lidia Maria Pepe de Moraes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document