transgenic yeast
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Pramesti Istiandari ◽  
Shuhei Yasumoto ◽  
Pisanee Srisawat ◽  
Keita Tamura ◽  
Ayaka Chikugo ◽  
...  

Triterpenoids are plant specialized metabolites with various pharmacological activities. They are widely distributed in higher plants, such as legumes. Because of their low accumulation in plants, there is a need for improving triterpenoid production. Cytochrome P450 monooxygenases (CYPs) play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations, CYPs require the electrons that are transferred by NADPH-cytochrome P450 reductase (CPR). Plants possess two main CPR classes, class I and class II. CPR classes I and II have been reported to be responsible for primary and specialized (secondary) metabolism, respectively. In this study, we first analyzed the CPR expression level of three legumes species, Medicago truncatula, Lotus japonicus, and Glycyrrhiza uralensis, showing that the expression level of CPR class I was lower and more stable, while that of CPR class II was higher in almost all the samples. We then co-expressed different combinations of CYP716As and CYP72As with different CPR classes from these three legumes in transgenic yeast. We found that CYP716As worked better with CPR-I from the same species, while CYP72As worked better with any CPR-IIs. Using engineered yeast strains, CYP88D6 paired with class II GuCPR produced the highest level of 11-oxo-β-amyrin, the important precursor of high-value metabolites glycyrrhizin. This study provides insight into co-expressing genes from legumes for heterologous production of triterpenoids in yeast.


2021 ◽  
Vol 22 (23) ◽  
pp. 13048
Author(s):  
Aili Liu ◽  
Mengyuan Wei ◽  
Yong Zhou ◽  
Donghua Li ◽  
Rong Zhou ◽  
...  

SIMILAR TO RCD-ONEs (SROs) comprise a small plant-specific gene family which play important roles in regulating numerous growth and developmental processes and responses to environmental stresses. However, knowledge of SROs in sesame (Sesamum indicum L.) is limited. In this study, four SRO genes were identified in the sesame genome. Phylogenetic analysis showed that 64 SROs from 10 plant species were divided into two groups (Group I and II). Transcriptome data revealed different expression patterns of SiSROs over various tissues. Expression analysis showed that Group II SROs, especially SiSRO2b, exhibited a stronger response to various abiotic stresses and phytohormones than those in Group I, implying their crucial roles in response to environmental stimulus and hormone signals. In addition, the co-expression network and protein-protein interaction network indicated that SiSROs are associated with a wide range of stress responses. Moreover, transgenic yeast harboring SiSRO2b showed improved tolerance to salt, osmotic and oxidative stress, indicating SiSRO2b could confer multiple tolerances to transgenic yeast. Taken together, this study not only lays a foundation for further functional dissection of the SiSRO gene family, but also provides valuable gene candidates for genetic improvement of abiotic stress tolerance in sesame.


2021 ◽  
Vol 22 (22) ◽  
pp. 12430
Author(s):  
Peihong Chen ◽  
Jie Yang ◽  
Quanlin Mei ◽  
Huayu Liu ◽  
Yunpeng Cheng ◽  
...  

Abiotic stresses are increasingly harmful to crop yield and quality. Calcium and its signaling pathway play an important role in modulating plant stress tolerance. As specific Ca2+ sensors, calcineurin B-like (CBL) proteins play vital roles in plant stress response and calcium signaling. The CBL family has been identified in many plant species; however, the characterization of the CBL family and the functional study of apple MdCBL proteins in salt response have yet to be conducted in apple. In this study, 11 MdCBL genes were identified from the apple genome. The coding sequences of these MdCBL genes were cloned, and the gene structure and conserved motifs were analyzed in detail. The phylogenetic analysis indicated that these MdCBL proteins could be divided into four groups. The functional identification in Na+-sensitive yeast mutant showed that the overexpression of seven MdCBL genes could confer enhanced salt stress resistance in transgenic yeast. The function of MdCBL10.1 in regulating salt tolerance was also verified in cisgenic apple calli and apple plants. These results provided valuable insights for future research examining the function and mechanism of CBL proteins in regulating apple salt tolerance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Payal Sanadhya ◽  
Anil Kumar ◽  
Patricia Bucki ◽  
Nathalia Fitoussi ◽  
Mira Carmeli-Weissberg ◽  
...  

The role of the 9-lipoxygenase (9-LOX)-derived oxylipins in plant defense is mainly known in solanaceous plants. In this work, we identify the functional role of the tomato divinyl ether synthase (LeDES) branch, which exclusively converts 9-hydroperoxides to the 9-divinyl ethers (DVEs) colneleic acid (CA) and colnelenic acid (CnA), during infection by the root-knot nematode Meloidogyne javanica. Analysis of LeDES expression in roots indicated a concurrent response to nematode infection, demonstrating a sharp increase in expression during the molting of third/fourth-stage juveniles, 15 days after inoculation. Spatiotemporal expression analysis using an LeDES promoter:GUS tomato line showed high GUS activity associated with the developing gall; however the GUS signal became more constricted as infection progressed to the mature nematode feeding sites, and eventually disappeared. Wounding did not activate the LeDES promoter, but auxins and methyl salicylate triggered LeDES expression, indicating a hormone-mediated function of DVEs. Heterologous expression of LeDES in Arabidopsis thaliana rendered the plants more resistant to nematode infection and resulted in a significant reduction in third/fourth-stage juveniles and adult females as compared to a vector control and the wild type. To further evaluate the nematotoxic activity of the DVEs CA and CnA, recombinant yeast that catalyzes the formation of CA and CnA from 9-hydroperoxides was generated. Transgenic yeast accumulating CnA was tested for its impact on M. javanica juveniles, indicating a decrease in second-stage juvenile motility. Taken together, our results suggest an important role for LeDES as a determinant in the defense response during M. javanica parasitism, and indicate two functional modes: directly via DVE motility inhibition effect and through signal molecule-mediated defense reactions to nematodes that depend on methyl salicylate.


Author(s):  
Huining Ju ◽  
Daxing Li ◽  
Dequan Li ◽  
Xinghong Yang ◽  
Yang Liu

2021 ◽  
Author(s):  
huining Ju ◽  
daxing Li ◽  
Dequan Li ◽  
Xinghong Yang ◽  
Yang Liu

Abstract Late embryogenesis abundant (LEA) proteins are widely assumed to play crucial roles in environmental stress tolerance, but their function has remained obscure. Dehydrins are group II LEA proteins, which are highly hydrophilic plant stress proteins. In the present study, a novel group II LEA protein, ZmDHN11 was cloned and identified from maize. The expression of ZmDHN11 was induced by high osmotic stress, low temperature, salinity and ABA (abscisic acid). The ZmDHN11 protein specifically accumulated in the nuclei and cytosol. Further study indicated that ZmDHN11 is phosphorylated by the casein kinase CKII. ZmDHN11 protected the activity of LDH under water deficit stress. The overexpression of ZmDHN11 endows transgenic yeast and tobacco with tolerance to osmotic stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhuang Zhang ◽  
Wenmin Qiu ◽  
Wen Liu ◽  
Xiaojiao Han ◽  
Longhua Wu ◽  
...  

AbstractThe F-box genes, which form one of the largest gene families in plants, are vital for plant growth, development and stress response. However, F-box gene family in Sedum alfredii remains unknown. Comprehensive studies addressing their function responding to cadmium stress is still limited. In the present study, 193 members of the F-box gene (SaFbox) family were identified, which were classified into nine subfamilies. Most of the SaFboxs had highly conserved domain and motif. Various functionally related cis-elements involved in plant growth regulation, stress and hormone responses were located in the upstream regions of SaFbox genes. RNA-sequencing and co-expression network analysis revealed that the identified SaFbox genes would be involved in Cd stress. Expression analysis of 16 hub genes confirmed their transcription level in different tissues. Four hub genes (SaFbox40, SaFbox51, SaFbox136 and SaFbox170) were heterologously expressed in a Cd-sensitive yeast cell to assess their effects on Cd tolerance. The transgenic yeast cells carrying SaFbox40, SaFbox51, SaFbox136, or SaFbox170 were more sensitive and accumulated more cadmium under Cd stress than empty vector transformed control cells. Our results performed a comprehensive analysis of Fboxs in S. alfredii and identified their potential roles in Cd stress response.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 219
Author(s):  
Il-Sup Kim ◽  
Woong Choi ◽  
Jonghyeon Son ◽  
Jun Hyuck Lee ◽  
Hyoungseok Lee ◽  
...  

The cryoprotection of cell activity is a key determinant in frozen-dough technology. Although several factors that contribute to freezing tolerance have been reported, the mechanism underlying the manner in which yeast cells respond to freezing and thawing (FT) stress is not well established. Therefore, the present study demonstrated the relationship between DaMDHAR encoding monodehydroascorbate reductase from Antarctic hairgrass Deschampsia antarctica and stress tolerance to repeated FT cycles (FT2) in transgenic yeast Saccharomyces cerevisiae. DaMDHAR-expressing yeast (DM) cells identified by immunoblotting analysis showed high tolerance to FT stress conditions, thereby causing lower damage for yeast cells than wild-type (WT) cells with empty vector alone. To detect FT2 tolerance-associated genes, 3′-quant RNA sequencing was employed using mRNA isolated from DM and WT cells exposed to FT (FT2) conditions. Approximately 332 genes showed ≥2-fold changes in DM cells and were classified into various groups according to their gene expression. The expressions of the changed genes were further confirmed using western blot analysis and biochemical assay. The upregulated expression of 197 genes was associated with pentose phosphate pathway, NADP metabolic process, metal ion homeostasis, sulfate assimilation, β-alanine metabolism, glycerol synthesis, and integral component of mitochondrial and plasma membrane (PM) in DM cells under FT2 stress, whereas the expression of the remaining 135 genes was partially related to protein processing, selenocompound metabolism, cell cycle arrest, oxidative phosphorylation, and α-glucoside transport under the same condition. With regard to transcription factors in DM cells, MSN4 and CIN5 were activated, but MSN2 and MGA1 were not. Regarding antioxidant systems and protein kinases in DM cells under FT stress, CTT1, GTO, GEX1, and YOL024W were upregulated, whereas AIF1, COX2, and TRX3 were not. Gene activation represented by transcription factors and enzymatic antioxidants appears to be associated with FT2-stress tolerance in transgenic yeast cells. RCK1, MET14, and SIP18, but not YPK2, have been known to be involved in the protein kinase-mediated signalling pathway and glycogen synthesis. Moreover, SPI18 and HSP12 encoding hydrophilin in the PM were detected. Therefore, it was concluded that the genetic network via the change of gene expression levels of multiple genes contributing to the stabilization and functionality of the mitochondria and PM, not of a single gene, might be the crucial determinant for FT tolerance in DaMDAHR-expressing transgenic yeast. These findings provide a foundation for elucidating the DaMDHAR-dependent molecular mechanism of the complex functional resistance in the cellular response to FT stress.


2020 ◽  
Vol 202 ◽  
pp. 110917 ◽  
Author(s):  
Vinicius Henrique De Oliveira ◽  
Ihsan Ullah ◽  
Jim M. Dunwell ◽  
Mark Tibbett

Sign in / Sign up

Export Citation Format

Share Document