scholarly journals Tunnel engineering to accelerate product release for better biomass-degrading abilities in lignocellulolytic enzymes

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenghui Lu ◽  
Xinzhi Li ◽  
Rui Zhang ◽  
Li Yi ◽  
Yanhe Ma ◽  
...  

Abstract Background For enzymes with buried active sites, transporting substrates/products ligands between active sites and bulk solvent via access tunnels is a key step in the catalytic cycle of these enzymes. Thus, tunnel engineering is becoming a powerful strategy to refine the catalytic properties of these enzymes. The tunnel-like structures have been described in enzymes catalyzing bulky substrates like glycosyl hydrolases, while it is still uncertain whether these structures involved in ligands exchange. Till so far, no studies have been reported on the application of tunnel engineering strategy for optimizing properties of enzymes catalyzing biopolymers. Results In this study, xylanase S7-xyl (PDB: 2UWF) with a deep active cleft was chosen as a study model to evaluate the functionalities of tunnel-like structures on the properties of biopolymer-degrading enzymes. Three tunnel-like structures in S7-xyl were identified and simultaneously reshaped through multi-sites saturated mutagenesis; the most advantageous mutant 254RL1 (V207N/Q238S/W241R) exhibited 340% increase in specific activity compared to S7-xyl. Deconvolution analysis revealed that all three mutations contributed synergistically to the improved activity of 254RL1. Enzymatic characterization showed that larger end products were released in 254RL1, while substrate binding and structural stability were not changed. Dissection of the structural alterations revealed that both the tun_1 and tun_2 in 254RL1 have larger bottleneck radius and shorter length than those of S7-xyl, suggesting that these tunnel-like structures may function as products transportation pathways. Attributed to the improved catalytic efficiency, 254RL1 represents a superior accessory enzyme to enhance the hydrolysis efficiency of cellulase towards different pretreated lignocellulose materials. In addition, tunnel engineering strategy was also successfully applied to improve the catalytic activities of three other xylanases including xylanase NG27-xyl from Bacillus sp. strain NG-27, TSAA1-xyl from Geobacillus sp. TSAA1 and N165-xyl from Bacillus sp. N16-5, with 80%, 20% and 170% increase in specific activity, respectively. Conclusions This study represents a pilot study of engineering and functional verification of tunnel-like structures in enzymes catalyzing biopolymer. The specific activities of four xylanases with buried active sites were successfully improved by tunnel engineering. It is highly likely that tunnel reshaping can be used to engineer better biomass-degrading abilities in other lignocellulolytic enzymes with buried active sites.

2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Min Li ◽  
Zhi-Jun Zhang ◽  
Xu-Dong Kong ◽  
Hui-Lei Yu ◽  
Jiahai Zhou ◽  
...  

ABSTRACT Streptomyces coelicolor CR1 (ScCR1) has been shown to be a promising biocatalyst for the synthesis of an atorvastatin precursor, ethyl-(S)-4-chloro-3-hydroxybutyrate [(S)-CHBE]. However, limitations of ScCR1 observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. First, the crystal structure of ScCR1 complexed with NADH and cosubstrate 2-propanol was solved, and the specific activity of ScCR1 was increased from 38.8 U/mg to 168 U/mg (ScCR1I158V/P168S) by structure-guided engineering. Second, directed evolution was performed to improve the stability using ScCR1I158V/P168S as a template, affording a triple mutant, ScCR1A60T/I158V/P168S, whose thermostability (T 50 15, defined as the temperature at which 50% of initial enzyme activity is lost following a heat treatment for 15 min) and substrate tolerance (C 50 15, defined as the concentration at which 50% of initial enzyme activity is lost following incubation for 15 min) were 6.2°C and 4.7-fold higher than those of the wild-type enzyme. Interestingly, the specific activity of the triple mutant was further increased to 260 U/mg. Protein modeling and docking analysis shed light on the origin of the improved activity and stability. In the asymmetric reduction of ethyl-4-chloro-3-oxobutyrate (COBE) on a 300-ml scale, 100 g/liter COBE could be completely converted by only 2 g/liter of lyophilized ScCR1A60T/I158V/P168S within 9 h, affording an excellent enantiomeric excess (ee) of >99% and a space-time yield of 255 g liter−1 day−1. These results suggest high efficiency of the protein engineering strategy and good potential of the resulting variant for efficient synthesis of the atorvastatin precursor. IMPORTANCE Application of the carbonyl reductase ScCR1 in asymmetrically synthesizing (S)-CHBE, a key precursor for the blockbuster drug Lipitor, from COBE has been hindered by its low catalytic activity and poor thermostability and substrate tolerance. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. The catalytic efficiency, thermostability, and substrate tolerance of ScCR1 were significantly improved by structure-guided engineering and directed evolution. The engineered ScCR1 may serve as a promising biocatalyst for the biosynthesis of (S)-CHBE, and the protein engineering strategy adopted in this work would serve as a useful approach for future engineering of other reductases toward potential application in organic synthesis.


2013 ◽  
Vol 79 (20) ◽  
pp. 6429-6438 ◽  
Author(s):  
Haiquan Yang ◽  
Long Liu ◽  
Hyun-dong Shin ◽  
Rachel R. Chen ◽  
Jianghua Li ◽  
...  

ABSTRACTIn this work, we integrated terminal truncation and N-terminal oligopeptide fusion as a novel protein engineering strategy to improve specific activity and catalytic efficiency of alkaline α-amylase (AmyK) fromAlkalimonas amylolytica. First, the C terminus or N terminus of AmyK was partially truncated, yielding 12 truncated mutants, and then an oligopeptide (AEAEAKAKAEAEAKAK) was fused at the N terminus of the truncated AmyK, yielding another 12 truncation-fusion mutants. The specific activities of the truncation-fusion mutants AmyKΔC500-587::OP and AmyKΔC492-587::OP were 25.5- and 18.5-fold that of AmyK, respectively. Thekcat/Kmwas increased from 1.0 × 105liters · mol−1· s−1for AmyK to 30.6 × and 23.2 × 105liters · mol−1· s−1for AmyKΔC500-587::OP and AmyKΔC492-587::OP, respectively. Comparative analysis of structure models indicated that the higher flexibility around the active site may be the main reason for the improved catalytic efficiency. The proposed terminal truncation and oligopeptide fusion strategy may be effective to engineer other enzymes to improve specific activity and catalytic efficiency.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Hui-Hui Su ◽  
Fei Peng ◽  
Pei Xu ◽  
Xiao-Ling Wu ◽  
Min-Hua Zong ◽  
...  

Abstract Background Glucaric acid, one of the aldaric acids, has been declared a “top value-added chemical from biomass”, and is especially important in the food and pharmaceutical industries. Biocatalytic production of glucaric acid from glucuronic acid is more environmentally friendly, efficient and economical than chemical synthesis. Uronate dehydrogenases (UDHs) are the key enzymes for the preparation of glucaric acid in this way, but the poor thermostability and low activity of UDH limit its industrial application. Therefore, improving the thermostability and activity of UDH, for example by semi-rational design, is a major research goal. Results In the present work, three UDHs were obtained from different Agrobacterium tumefaciens strains. The three UDHs have an approximate molecular weight of 32 kDa and all contain typically conserved UDH motifs. All three UDHs showed optimal activity within a pH range of 6.0–8.5 and at a temperature of 30 °C, but the UDH from A. tumefaciens (At) LBA4404 had a better catalytic efficiency than the other two UDHs (800 vs 600 and 530 s−1 mM−1). To further boost the catalytic performance of the UDH from AtLBA4404, site-directed mutagenesis based on semi-rational design was carried out. An A39P/H99Y/H234K triple mutant showed a 400-fold improvement in half-life at 59 °C, a 5 °C improvement in $$ {\text{T}}_{ 5 0}^{ 1 0} $$ T 50 10 value and a 2.5-fold improvement in specific activity at 30 °C compared to wild-type UDH. Conclusions In this study, we successfully obtained a triple mutant (A39P/H99Y/H234K) with simultaneously enhanced activity and thermostability, which provides a novel alternative for the industrial production of glucaric acid from glucuronic acid.


2021 ◽  
pp. 1-18
Author(s):  
R.A. Herman ◽  
Z.-N. Li ◽  
C. Xie ◽  
J.-Z. Wang ◽  
Y. Hu ◽  
...  

Edible insects, regarded as a potential contributor to food security are currently given wide consideration due to their rich protein and other micronutrients contents. In this study, protease-assisted hydrolysis proposes an economically effective approach to hydrolyse proteins from silkworm (Bombyx mori) pupae to improve its functional properties. The proteolytic activity of a novel neutral protease (265.14 U/ml) with appreciable thermal activities, was identified using 16S rDNA as Stenotrophomonas maltophilia JW20 (SmNP20). The neutral protease with an apparent molecular weight of 28 kDa emerged active at pH 7 and maintained stability in pH range 6.0-8.0. The optimum temperature was 60 °C and stable at 55-60 °C, maintaining over 80% of its initial activity, with a half-life of 78.75, 89, 66.8 and 44 min at 50, 60, 70 and 80 °C. It was purified to 9.98-fold with a specific activity of 455.06 U/mg and 63.73% yield. The Km and Vmax values were 0.70 mg/ml and 9.48 μmol/min/mg, respectively. Enzymolysis with neutral protease enhanced the degree of hydrolysis (97.46±4.87%), increased water solubility over 50%, and a significant protein solubility of 63.44±0.65%. The Km and Vmax of the protein yield were 0.24 mg/ml and 165.63 μmol/min/mg respectively. A total of 17 amino acids have been detected in the hydrolysates obtained from the silkworm pupae protein. In comparison with neutrase and flavorzyme®, the enzyme possesses an elevated hydrolytic and catalytic efficiency. Emulsion activity and foam capacity ranged from 8-48 m2/g and 6-25% respectively. Hence, this study confirms the unique and efficient characteristics of an insect-enzyme correlation that is practically significant with potential improvement in nutritional composition and functional quality of insect proteins.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Alsalme ◽  
Aliyah A. Alsharif ◽  
Hamda Al-Enizi ◽  
Mujeeb Khan ◽  
Saad G. Alshammari ◽  
...  

Supported heteropoly acids are an interesting class of solid acid catalysts which possess flexible structure and super acidic properties essentially required for the oil-based biodiesel production. In this study, a series of catalysts containing 25 wt.% of heteropolytungstate (HPW) supported on various clays or SiO2 were prepared, and their catalytic efficiency was evaluated for esterification of acetic acid with heptanol. The as-prepared catalysts were characterized by various techniques including FT-IR spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and BET. The catalytic efficiency of both bulk and supported HPW catalysts for the esterification activity strongly depends on the type of support and amount of catalyst; the bulk HPW catalyst and the catalyst supported by kaolinite with 25 wt.% of HPW exhibited highest activity. In order to study the effect of temperature on conversion, all the catalysts were subjected to different reaction temperatures. It was revealed that esterification activity of both bulk and supported HPW catalysts strongly depends upon the temperature variations of the reaction. Besides, the effect of leaching of active sites on the catalysts performance for biodiesel production was also evaluated by inductively coupled plasma studies (ICP). The kaolinite-supported catalyst (25% HPW/kaolinite) demonstrated higher amount of leaching which is also confirmed by the significant decrease in its catalytic activity when it is used for the second time. However, the higher activity demonstrated by HPW/kaolinite maybe because of some homogeneous reaction indicating a weak catalyst support interaction (WCSI) resulting in the leaching of the catalyst during the test. Furthermore, the effects of other reaction variables such as catalyst loading and reaction time on the conversion of acetic acid were also studied.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Boon Hooi Tan ◽  
Thean Chor Leow ◽  
Hooi Ling Foo ◽  
Raha Abdul Rahim

A superoxide dismutase (SOD) gene ofLactococcus lactisM4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression ofsodAunder T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD ofL. lactisIL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172).


2020 ◽  
Vol 117 (41) ◽  
pp. 25455-25463 ◽  
Author(s):  
Kristin L. Zuromski ◽  
Robert T. Sauer ◽  
Tania A. Baker

ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.


1989 ◽  
Vol 257 (4) ◽  
pp. G616-G623 ◽  
Author(s):  
H. A. Buller ◽  
A. G. Van Wassenaer ◽  
S. Raghavan ◽  
R. K. Montgomery ◽  
M. A. Sybicki ◽  
...  

Lactase-phlorizin hydrolase, a small intestinal disaccharidase, has been considered mainly an enzyme important only for the hydrolysis of lactose. After weaning in most mammals lactase-specific activity falls markedly, and, functionally, adult mammals are considered to be lactase deficient. However, the persistence of low levels of lactase activity in adulthood has never been explained. In addition, it has been suggested that lactase-phlorizin hydrolase is associated with glycosylceramidase activity when the enzyme is prepared by column chromatography, but it is unclear whether this represents copurified activities or two catalytic sites on one peptide. The developmental patterns of lactase-phlorizin hydrolase and other disaccharidases were investigated in homogenates of total rat small intestine; lactase and several glycosylceramidases were measured in immunoprecipitates from these homogenates using a monoclonal antibody. The developmental pattern of total lactase activity showed a steady 2.3-fold increase to adult levels (specific activity decreased eightfold), whereas total phlorizin-hydrolase activity increased 10.7-fold (specific activity decreased threefold). As expected, levels of both total and specific sucrase and maltase activities increased during development. In lactating rats total lactase activity showed a significant increase compared with adult males. The developmental pattern of the enzyme activities for the glycolipid substrates was similar to that found for lactase, and the immunoprecipitated enzyme showed a 40- to 55-fold higher affinity for the glycolipids than for lactose. Galactosyl- and lactosylceramide inhibited lactose hydrolysis by 38%, without a competitive pattern, suggesting two different active sites for lactose and glycolipid hydrolysis, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 72 (4) ◽  
pp. 2707-2720 ◽  
Author(s):  
Hiroaki Iwaki ◽  
Shaozhao Wang ◽  
Stephan Grosse ◽  
Hélène Bergeron ◽  
Ayako Nagahashi ◽  
...  

ABSTRACT Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that offer the prospect of high chemo-, regio-, and enantioselectivity in the organic synthesis of lactones or esters from a variety of ketones. In this study, we have cloned, sequenced, and overexpressed in Escherichia coli a new BVMO, cyclopentadecanone monooxygenase (CpdB or CPDMO), originally derived from Pseudomonas sp. strain HI-70. The 601-residue primary structure of CpdB revealed only 29% to 50% sequence identity to those of known BVMOs. A new sequence motif, characterized by a cluster of charged residues, was identified in a subset of BVMO sequences that contain an N-terminal extension of ∼60 to 147 amino acids. The 64-kDa CPDMO enzyme was purified to apparent homogeneity, providing a specific activity of 3.94 μmol/min/mg protein and a 20% yield. CPDMO is monomeric and NADPH dependent and contains ∼1 mol flavin adenine dinucleotide per mole of protein. A deletion mutant suggested the importance of the N-terminal 54 amino acids to CPDMO activity. In addition, a Ser261Ala substitution in a Rossmann fold motif resulted in an improved stability and increased affinity of the enzyme towards NADPH compared to the wild-type enzyme (Km = 8 μM versus Km = 24 μM). Substrate profiling indicated that CPDMO is unusual among known BVMOs in being able to accommodate and oxidize both large and small ring substrates that include C11 to C15 ketones, methyl-substituted C5 and C6 ketones, and bicyclic ketones, such as decalone and β-tetralone. CPDMO has the highest affinity (Km = 5.8 μM) and the highest catalytic efficiency (k cat/Km ratio of 7.2 × 105 M−1 s−1) toward cyclopentadecanone, hence the Cpd designation. A number of whole-cell biotransformations were carried out, and as a result, CPDMO was found to have an excellent enantioselectivity (E > 200) as well as 99% S-selectivity toward 2-methylcyclohexanone for the production of 7-methyl-2-oxepanone, a potentially valuable chiral building block. Although showing a modest selectivity (E = 5.8), macrolactone formation of 15-hexadecanolide from the kinetic resolution of 2-methylcyclopentadecanone using CPDMO was also demonstrated.


Blood ◽  
2020 ◽  
Vol 135 (8) ◽  
pp. 558-567 ◽  
Author(s):  
Ivan Ivanov ◽  
Ingrid M. Verhamme ◽  
Mao-fu Sun ◽  
Bassem Mohammed ◽  
Qiufang Cheng ◽  
...  

Abstract Prekallikrein (PK) is the precursor of the trypsin-like plasma protease kallikrein (PKa), which cleaves kininogens to release bradykinin and converts the protease precursor factor XII (FXII) to the enzyme FXIIa. PK and FXII undergo reciprocal conversion to their active forms (PKa and FXIIa) by a process that is accelerated by a variety of biological and artificial surfaces. The surface-mediated process is referred to as contact activation. Previously, we showed that FXII expresses a low level of proteolytic activity (independently of FXIIa) that may initiate reciprocal activation with PK. The current study was undertaken to determine whether PK expresses similar activity. Recombinant PK that cannot be converted to PKa was prepared by replacing Arg371 with alanine at the activation cleavage site (PK-R371A, or single-chain PK). Despite being constrained to the single-chain precursor form, PK-R371A cleaves high-molecular-weight kininogen (HK) to release bradykinin with a catalytic efficiency ∼1500-fold lower than that of kallikrein cleavage of HK. In the presence of a surface, PK-R371A converts FXII to FXIIa with a specific activity ∼4 orders of magnitude lower than for PKa cleavage of FXII. These results support the notion that activity intrinsic to PK and FXII can initiate reciprocal activation of FXII and PK in solution or on a surface. The findings are consistent with the hypothesis that the putative zymogens of many trypsin-like proteases are actually active proteases, explaining their capacity to undergo processes such as autoactivation and to initiate enzyme cascades.


Sign in / Sign up

Export Citation Format

Share Document