scholarly journals Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris)

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Kulwa Mtaki ◽  
Margareth S. Kyewalyanga ◽  
Matern S. P. Mtolera

Abstract Introduction The decline in fishery resources from the wild has led to an ever increasing focus on aquaculture in recent years. With increasing aquaculture of animal species, there is an increasing need for suitable microalgae in the production of these animals. However, cultivation of microalgae in expensive pure chemical media is one of the major challenges facing large-scale cultivation of microalgae. Purpose The present study investigated the suitability of aquaculture wastewater (AWW) supplemented with NPK (nitrogen:phosphorus:potassium) fertilizer as a cheap source of nutrient to cultivate a microalga Chlorella vulgaris (C. vulgaris). Methods C. vulgaris with an initial cell density of 0.8 × 106 cells/mL was batch cultured in AWW supplemented with NPK at 0.1, 0.5, 1.0 g/L and BBM for 20 days under laboratory conditions using 2000 mL Erlenmeyer flasks. The proximate composition, chlorophyll, minerals, and vitamins analysis of C. vulgaris biomass were done using standard analytical methods. Results The highest values in optical density (4.872 ± 0.025), dry cell weight (2.858 ± 0.015 g/L), specific growth rate (0.2097 ± 0.0038 day–1), and biomass productivity (0.1701 ± 0.0007 g/L/day) were obtained in C. vulgaris grown in AWW + 1.0 NPK medium. The total chlorophyll, protein, lipid, and carbohydrate content of the microalgae biomass were in the range of 0.05–0.862%, 44.062–57.089%, 17.064–23.260%, and 15.217–21.896%, respectively. Furthermore, microalgae grown in AWW + 1.0 NPK showed good vitamin and mineral content compared to BBM grown alga. Conclusion These findings indicated that the AWW + 0.1 NPK, AWW + 0.5 NPK, and AWW + 1.0 NPK are potential growth media for C. vulgaris cultivation and can replace the BBM medium, which is very expensive and less accessible to users.

2019 ◽  
Vol 21 (1) ◽  
pp. 82-89 ◽  

<p>New challenges for industrial microbiology and biotechnology of algae are to increase the efficiency of microalgae growth rates and decrease the cultivation costs. Algae could be cultivated in fresh water as well as in salty sea water or wastewater. Microalgae biomass can be used as a sorbent to remove microcontaminants (e.g. heavy metals, biogens) from wastewater. The obtained results showed that there is a possibility of application of a cheap and universal growing medium (Bf) despite common fertilizers: Bristol or BG-11 to cultivate Chlorella vulgaris and Scenedesmus armatus. The mixotrophic condition can be useful for cultivation of Chlorella vulgaris and Scenedesmus armatus. The highest concentrations of algal biomass for both species were determined after the application of the Bf medium, lower after the BG-11 medium and the lowest after the Br medium in autotrophic as well as mixotrophic conditions. The number of C. vulgaris cells in mixotrophic conditions was higher than S. armatus. The utilization of cheap growing media will lowering the production costs of algal biomass on a large scale.</p>


2021 ◽  
Vol 13 (4) ◽  
pp. 2267
Author(s):  
Lenin C. Kandasamy ◽  
Marcos A. Neves ◽  
Mikihide Demura ◽  
Mitsutoshi Nakajima

The biosequestration of CO2 using microalgae has emerged as a promising means of recycling CO2 into biomass via photosynthesis, which could be used to produce biofuels as an attractive approach to CO2 mitigation. We investigated the CO2 fixation capability of the native nonaxenic microalgal culture using a 2 L photobioreactor operated in batch mode. The cultivation was carried out at varying concentrations of total dissolved CO2 (Tco2) in the bulk media ranging from 200 to 1000 mg L−1, and the temperature and light intensities were kept constant. A maximum CO2 fixation rate was observed at 400 mg L−1 of Tco2. Characteristic growth parameters such as biomass productivity, specific growth rate, maximum biomass yield, and biochemical parameters such as carbohydrate, protein, and lipids were determined and discussed. We observed that the effect of CO2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 22.10 ± 0.70 mg L−1 day−1, and the rate of CO2 fixation was 28.85 ± 3.00 mg L−1 day−1 at 400 mg L−1 of Tco2. The maximum carbohydrate (8.17 ± 0.49% dry cell weight) and protein (30.41 ± 0.65%) contents were observed at 400 mg L−1, whereas the lipid content (56.00 ± 0.82% dry cell weight) was the maximum at 800 mg L−1 of Tco2 in the bulk medium.


2021 ◽  
Vol 42 (3) ◽  
pp. 1369-1378
Author(s):  
Julia Teodoro de Souza Nicolau ◽  
◽  
João Henrique Alves Souza ◽  
Pedro Augusto Arroyo ◽  
Elias Trevisan ◽  
...  

The biomass productivity and nutrient composition of microalgae, such as Chlorella vulgaris, depend on the cultivation process and the nutrient content of growth media. Thus, in this study aimed to investigate the biomass productivity of C. vulgaris cultivated in fish and dairy cattle wastewaters. Thirty wastewater samples (2.5 L) were collected from system of production. Microalgae were cultivated in Erlenmeyer flasks containing 10 mL of microalgae and 1,790 mL of wastewater under constant light of 5,000 lux for 16 days at 25 ± 2.0 °C. Wastewater samples differed in composition. Biomass productivity was 47 % higher (P<0.0001) in dairy cattle than in fish wastewater, reaching 67.61 g m?3 day?1 (dry matter basis, DM) when compared by Student’s t-test (P<0.05). Cultivation media also had an effect on biomass chemical composition. The C. vulgaris grown in dairy cattle wastewater was higher in crude protein and ash contents (359.6 g kg?1 DM and 230.4 g kg?1 DM, respectively), whereas microalgae grown in fish wastewater had higher nitrogen-free extract content (347.8 g kg?1 DM). Crude fat content did not vary greatly (mean of 313.15 g kg?1 DM). The pH (8.0 – 8.7) and ammonia concentration (0.07 to 0.4 mg L?1) in fish wastewater was stable throughout the 16-day experimental period. In dairy wastewater, pH increased up (6.3 to 8.9) to the fourth day and remained constant thereafter, and ammonia concentration increased up (24.3 to 28.7 mg L?1) to the eighth day and then it declined (2.1 mg L?1). The C. vulgaris was successfully grown in both wastewaters, but productivity was higher in dairy cattle wastewater.


2019 ◽  
Vol 10 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Mohammad H. Morowvat ◽  
Younes Ghasemi

Background: Nowadays, chlorophycean microalgae have attained a broad-spectrum attention as a potential candidate for biomass and bioenergy production. Despite their appreciated benefits, one of major problems is their low biomass and lipid productivity. Here we investigated the heterotrophic culture in shake flasks and stirred tank bioreactor to improve the lipid and biomass production in a naturally isolated strain of Chlorella vulgaris. Methods: A naturally isolated C. vulgaris strain was cultivated in BG-11 medium in shake flask and bioreactor. Its biochemical composition and growth kinetic parameters were investigated. Results: The biomass productivity was improved (3.68 fold) under heterotrophic culture compared to basal autotrophic culture condition in shake flask experiment. The total lipid content increased to 44% of total Dry Cell Weight (DCW) during heterotrophic growth after 21 days. Moreover, a great Fatty Acid Methyl Esters (FAME) yield was observed under heterotrophic cultivation. Total biomass and lipid content of microalgae in bioreactor experiment increased to 4.95 and 2.18 g L-1 respectively, during 5 days of the experiment compared to its basic autotrophic culture. Conclusion: The techno-economic aspects of exploiting C. vulgaris as a biodiesel feedstock werealso evaluated. The results imply that heterotrophic cultivation could compensate the low biomass productivity in microalgae for green energy production. Ever growing rates of established patents on application of various genetic and bioengineering-based methods have made it possible to achieve higher lipid contents with reduced total costs for microalgal biodiesel production as well.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cong Li ◽  
Qiuyi Shen ◽  
Xiang Cai ◽  
Danni Lai ◽  
Lingshang Wu ◽  
...  

Abstract Background Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. Results In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. Conclusions The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koji Kawamura ◽  
Suzune Nishikawa ◽  
Kotaro Hirano ◽  
Ardianor Ardianor ◽  
Rudy Agung Nugroho ◽  
...  

AbstractAlgal biofuel research aims to make a renewable, carbon–neutral biofuel by using oil-producing microalgae. The freshwater microalga Botryococcus braunii has received much attention due to its ability to accumulate large amounts of petroleum-like hydrocarbons but suffers from slow growth. We performed a large-scale screening of fast-growing strains with 180 strains isolated from 22 ponds located in a wide geographic range from the tropics to cool-temperate. A fast-growing strain, Showa, which recorded the highest productivities of algal hydrocarbons to date, was used as a benchmark. The initial screening was performed by monitoring optical densities in glass tubes and identified 9 wild strains with faster or equivalent growth rates to Showa. The biomass-based assessments showed that biomass and hydrocarbon productivities of these strains were 12–37% and 11–88% higher than that of Showa, respectively. One strain, OIT-678 established a new record of the fastest growth rate in the race B strains with a doubling time of 1.2 days. The OIT-678 had 36% higher biomass productivity, 34% higher hydrocarbon productivity, and 20% higher biomass density than Showa at the same cultivation conditions, suggesting the potential of the new strain to break the record for the highest productivities of hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document