scholarly journals Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingjie Xv ◽  
Fajin Lv ◽  
Haoming Guo ◽  
Xiang Zhou ◽  
Hao Tan ◽  
...  

Abstract Purpose To investigate the predictive performance of machine learning-based CT radiomics for differentiating between low- and high-nuclear grade of clear cell renal cell carcinomas (CCRCCs). Methods This retrospective study enrolled 406 patients with pathologically confirmed low- and high-nuclear grade of CCRCCs according to the WHO/ISUP grading system, which were divided into the training and testing cohorts. Radiomics features were extracted from nephrographic-phase CT images using PyRadiomics. A support vector machine (SVM) combined with three feature selection algorithms such as least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF was performed to determine the most suitable classification model, respectively. Clinicoradiological, radiomics, and combined models were constructed using the radiological and clinical characteristics with significant differences between the groups, selected radiomics features, and a combination of both, respectively. Model performance was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses. Results SVM-ReliefF algorithm outperformed SVM-LASSO and SVM-RFE in distinguishing low- from high-grade CCRCCs. The combined model showed better prediction performance than the clinicoradiological and radiomics models (p < 0.05, DeLong test), which achieved the highest efficacy, with an area under the ROC curve (AUC) value of 0.887 (95% confidence interval [CI] 0.798–0.952), 0.859 (95% CI 0.748–0.935), and 0.828 (95% CI 0.731–0.929) in the training, validation, and testing cohorts, respectively. The calibration and decision curves also indicated the favorable performance of the combined model. Conclusion A combined model incorporating the radiomics features and clinicoradiological characteristics can better predict the WHO/ISUP nuclear grade of CCRCC preoperatively, thus providing effective and noninvasive assessment.

2010 ◽  
Vol 195 (5) ◽  
pp. W344-W351 ◽  
Author(s):  
Andrew B. Rosenkrantz ◽  
Benjamin E. Niver ◽  
Erin F. Fitzgerald ◽  
James S. Babb ◽  
Hersh Chandarana ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1106
Author(s):  
Yan Hu ◽  
Lijia Xu ◽  
Peng Huang ◽  
Xiong Luo ◽  
Peng Wang ◽  
...  

A rapid and nondestructive tea classification method is of great significance in today’s research. This study uses fluorescence hyperspectral technology and machine learning to distinguish Oolong tea by analyzing the spectral features of tea in the wavelength ranging from 475 to 1100 nm. The spectral data are preprocessed by multivariate scattering correction (MSC) and standard normal variable (SNV), which can effectively reduce the impact of baseline drift and tilt. Then principal component analysis (PCA) and t-distribution random neighborhood embedding (t-SNE) are adopted for feature dimensionality reduction and visual display. Random Forest-Recursive Feature Elimination (RF-RFE) is used for feature selection. Decision Tree (DT), Random Forest Classification (RFC), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) are used to establish the classification model. The results show that MSC-RF-RFE-SVM is the best model for the classification of Oolong tea in which the accuracy of the training set and test set is 100% and 98.73%, respectively. It can be concluded that fluorescence hyperspectral technology and machine learning are feasible to classify Oolong tea.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Gennaro Tartarisco ◽  
Giovanni Cicceri ◽  
Davide Di Pietro ◽  
Elisa Leonardi ◽  
Stefania Aiello ◽  
...  

In the past two decades, several screening instruments were developed to detect toddlers who may be autistic both in clinical and unselected samples. Among others, the Quantitative CHecklist for Autism in Toddlers (Q-CHAT) is a quantitative and normally distributed measure of autistic traits that demonstrates good psychometric properties in different settings and cultures. Recently, machine learning (ML) has been applied to behavioral science to improve the classification performance of autism screening and diagnostic tools, but mainly in children, adolescents, and adults. In this study, we used ML to investigate the accuracy and reliability of the Q-CHAT in discriminating young autistic children from those without. Five different ML algorithms (random forest (RF), naïve Bayes (NB), support vector machine (SVM), logistic regression (LR), and K-nearest neighbors (KNN)) were applied to investigate the complete set of Q-CHAT items. Our results showed that ML achieved an overall accuracy of 90%, and the SVM was the most effective, being able to classify autism with 95% accuracy. Furthermore, using the SVM–recursive feature elimination (RFE) approach, we selected a subset of 14 items ensuring 91% accuracy, while 83% accuracy was obtained from the 3 best discriminating items in common to ours and the previously reported Q-CHAT-10. This evidence confirms the high performance and cross-cultural validity of the Q-CHAT, and supports the application of ML to create shorter and faster versions of the instrument, maintaining high classification accuracy, to be used as a quick, easy, and high-performance tool in primary-care settings.


Author(s):  
Feifan Chen ◽  
Zuwei Cao ◽  
Emad M. Grais ◽  
Fei Zhao

Abstract Purpose Noise-induced hearing loss (NIHL) is a global issue that impacts people’s life and health. The current review aims to clarify the contributions and limitations of applying machine learning (ML) to predict NIHL by analyzing the performance of different ML techniques and the procedure of model construction. Methods The authors searched PubMed, EMBASE and Scopus on November 26, 2020. Results Eight studies were recruited in the current review following defined inclusion and exclusion criteria. Sample size in the selected studies ranged between 150 and 10,567. The most popular models were artificial neural networks (n = 4), random forests (n = 3) and support vector machines (n = 3). Features mostly correlated with NIHL and used in the models were: age (n = 6), duration of noise exposure (n = 5) and noise exposure level (n = 4). Five included studies used either split-sample validation (n = 3) or ten-fold cross-validation (n = 2). Assessment of accuracy ranged in value from 75.3% to 99% with a low prediction error/root-mean-square error in 3 studies. Only 2 studies measured discrimination risk using the receiver operating characteristic (ROC) curve and/or the area under ROC curve. Conclusion In spite of high accuracy and low prediction error of machine learning models, some improvement can be expected from larger sample sizes, multiple algorithm use, completed reports of model construction and the sufficient evaluation of calibration and discrimination risk.


Sign in / Sign up

Export Citation Format

Share Document