scholarly journals ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaying Fu ◽  
Xuxiang Chen ◽  
Xin Liu ◽  
Daishi Xu ◽  
Huan Yang ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) have exerted their brilliant potential to promote heart repair following myocardial infarction. However, low survival rate of MSCs after transplantation due to harsh conditions with hypoxic and ischemic stress limits their therapeutic efficiency in treating cardiac dysfunction. ELABELA (ELA) serves as a peptide hormone which has been proved to facilitate cell growth, survival, and pluripotency in human embryonic stem cells. Although ELA works as an endogenous ligand of a G protein-coupled receptor APJ (Apelin receptor, APLNR), whether APJ is an essential signal for the function of ELA remains elusive. The effect of ELA on apoptosis of MSCs is still vague. Objective We studied the role of ELABELA (ELA) treatment on the anti-apoptosis of MSCs in hypoxic/ischemic (H/I) conditions which mimic the impaired myocardial microenvironment and explored the possible mechanisms in vitro. Methods MSCs were obtained from donated rats weighing between 80~120 g. MSCs were exposed to serum-free and hypoxic (1% O2) environments for 24 h, which mimics hypoxic/ischemic damage in vivo, using serum-containing normoxic conditions (20% O2) as a negative control. MSCs that were exposed to H/I injury with ELA processing were treated by 5 μM of ELA. Cell viability and apoptosis of MSCs were evaluated by CCK8 and flow cytometry, respectively. Mitochondrial function of MSCs was also assessed according to mitochondrial membrane potential (MMP) and ATP content. The protein expression of key kinases of the PI3K/AKT and ERK1/2 signaling pathways involving t-AKT, p-AKT, t-ERK1/2, and p-ERK1/2, as well as apoptosis-related protein expression of Bcl-2, Bax, and cleaved Caspase 3, were monitored by Western blot. Results We found that ELA treatment of H/I-induced MSCs improved overall cell viability, enhanced Bcl/Bax expression, and decreased Caspase 3 activity. ELA inhibited H/I-induced mitochondrial dysfunction by increasing ATP concentration and suppressing the loss of mitochondrial transmembrane potential. However, this anti-apoptotic property of ELA was restrained in APJ-silenced MSCs. Additionally, ELA treatment induced the phosphorylation of AKT and ERK, while the blockade of PI3K/AKT and ERK1/2 pathways with respective inhibitors, LY294002 and U0126, suppressed the action of ELA. Conclusion ELA positively affected on the survival of MSCs and exhibited anti-apoptotic characteristics when exposed to hypoxic/ischemic condition in vitro. Also, the function of ELA was correlated with the APJ receptor, reduced mitochondrial damage, and activation of the PI3K/AKT and ERK1/2 signal axes.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Mohsin Khan ◽  
Suresh K Verma ◽  
Alexander R Mackie ◽  
Erin Vaughan ◽  
Srikanth Garikipati ◽  
...  

Rationale: Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to ethical concerns, lack of autologous donors and teratoma formation. Recently, it has been observed that beneficial effects of stem cells are mediated by exosomes secreted out under various physiological conditions. ESCs have the ability to produce exosomes however their effect in the context of the heart is unknown. Objective: Determine the effect of ESC derived exosomes for cardiac repair and modulation of CPCs functions in the heart following myocardial infarction. Methods and Results: Exosomes were isolated from murine ESCs (mES Ex) or embryonic fibroblasts (MEFs) by ultracentrifugation and verified by Flotillin-1 immunoblot analysis. Induction of pluripotent markers, survival and in vitro tube formation was enhanced in target cells receiving ESC exosomes indicating therapeutic potential of mES Ex. mES Ex administration resulted in enhanced neovascularization, cardiomyocyte survival and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex mediated considerable enhancement of cardiac progenitor cell (CPC) survival, proliferation and cardiac commitment concurrent with increased c-kit+ CPCs in vivo 4 weeks after mES Ex transfer. miRNA Array analysis of ESC and MEF exosomes revealed significantly high expression of miR290-295 cluster in the ESC exosomes compared to MEF exosomes. The underlying beneficial effect of mES Ex was tied to delivery of ESC miR-294 to the heart and in particular CPCs thereby promoting CPC survival and proliferation as analyzed by FACS based cell death analysis and CyQuant assay respectively. Interestingly, enhanced G1/S transition was observed in CPCs treated with miR-294 in conjunction with significant reduction of G1 phase. Conclusion: In conclusion, mES Ex provide a novel cell free system for cardiac regeneration with the ability to modulate both cardiomyocyte and CPC based repair programs in the heart thereby avoiding the risk of teratoma formation associated with ESCs.


2015 ◽  
Vol 13 (1) ◽  
pp. 720-730 ◽  
Author(s):  
LIPING OU ◽  
LIAOQIONG FANG ◽  
HEJING TANG ◽  
HAI QIAO ◽  
XIAOMEI ZHANG ◽  
...  

Author(s):  
Hao Xu ◽  
Liying Wu ◽  
Guojia Yuan ◽  
Xiaolu Liang ◽  
Xiaoguang Liu ◽  
...  

: Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.


2020 ◽  
pp. 019262332091824
Author(s):  
Richard Haworth ◽  
Michaela Sharpe

In 2011, Goldring and colleagues published a review article describing the potential safety issues of novel stem cell-derived treatments. Immunogenicity and immunotoxicity of the administered cell product were considered risks in the light of clinical experience of transplantation. The relative immunogenicity of mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) was being addressed through in vitro and in vivo models. But the question arose as to whether the implanted cells needed to be identical to the recipient in every respect, including epigenetically, to evade immune recognition? If so, this set a high bar which may preclude use of many cells derived from iPSCs which have vestiges of a fetal phenotype and epigenetic memory of their cell of origin. However, for autologous iPSCs, the immunogenicity reduces once the surface antigen expression profile becomes close to that of the parent somatic cells. Therefore, a cell product containing incompletely differentiated cells could be more immunogenic. The properties of the administered cells, the immune privilege of the administration site, and the host immune status influence graft success or failure. In addition, the various approaches available to characterize potential immunogenicity of a cell therapy will be discussed.


2019 ◽  
Vol 8 (7) ◽  
pp. 976 ◽  
Author(s):  
Kwang Bo Jung ◽  
Ohman Kwon ◽  
Mi-Ok Lee ◽  
Hana Lee ◽  
Ye Seul Son ◽  
...  

Human intestinal organoids (hIOs), which resemble the human intestine structurally and physiologically, have emerged as a new modality for the study of the molecular and cellular biology of the intestine in vitro. We recently developed an in vitro maturation technique for generating functional hIOs from human pluripotent stem cells (hPSCs). Here, we investigated the function of STAT3 for inducing in vitro maturation of hIOs. This was accompanied by the tyrosine phosphorylation of STAT3, whereas treatment with pharmacological inhibitors of STAT3 suppressed the phosphorylation of STAT3 and the expression of intestinal maturation markers. We generated and characterized STAT3 knockout (KO) human embryonic stem cell (hESC) lines using CRISPR/Cas9-mediated gene editing. We found that STAT3 KO does not affect the differentiation of hESCs into hIOs but rather affects the in vitro maturation of hIOs. STAT3 KO hIOs displayed immature morphologies with decreased size and reduced budding in hIOs even after in vitro maturation. STAT3 KO hIOs showed markedly different profiles from hIOs matured in vitro and human small intestine. Additionally, STAT3 KO hIOs failed to maintain upon in vivo transplantation. This study reveals a core signaling pathway consisting of STAT3 controlling the in vitro maturation of hIOs derived from hPSCs.


2010 ◽  
Vol 88 (3) ◽  
pp. 479-490 ◽  
Author(s):  
Guoliang Meng ◽  
Shiying Liu ◽  
Xiangyun Li ◽  
Roman Krawetz ◽  
Derrick E. Rancourt

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.


2015 ◽  
Vol 113 (4) ◽  
pp. 960-965 ◽  
Author(s):  
Sarah K. C. Cheung ◽  
Po-Kai Chuang ◽  
Han-Wen Huang ◽  
Wendy W. Hwang-Verslues ◽  
Candy Hsin-Hua Cho ◽  
...  

The discovery of cancer stem cells (CSCs), which are responsible for self-renewal and tumor growth in heterogeneous cancer tissues, has stimulated interests in developing new cancer therapies and early diagnosis. However, the markers currently used for isolation of CSCs are often not selective enough to enrich CSCs for the study of this special cell population. Here we show that the breast CSCs isolated with CD44+CD24-/loSSEA-3+ or ESAhiPROCRhiSSEA-3+ markers had higher tumorigenicity than those with conventional markers in vitro and in vivo. As few as 10 cells with CD44+CD24-/loSSEA-3+ formed tumor in mice, compared with more than 100 cells with CD44+CD24-/lo. Suppression of SSEA-3 expression by knockdown of the gene encoding β-1,3-galactosyltransferase 5 (β3GalT5) in the globo-series pathway, led to apoptosis in cancer cells specifically but had no effect on normal cells. This finding is further supported by the analysis of SSEA-3 and the two related globo-series epitopes SSEA4 and globo-H in stem cells (embryonic stem cells and induced pluripotent stem cells) and various normal and cancer cells, and by the antibody approach to target the globo-series glycans and the late-stage clinical trials of a breast cancer vaccine.


Sign in / Sign up

Export Citation Format

Share Document