scholarly journals Mesenchymal stem cells ameliorate renal fibrosis by galectin-3/Akt/GSK3β/Snail signaling pathway in adenine-induced nephropathy rat

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huajun Tang ◽  
Peiyue Zhang ◽  
Lianlin Zeng ◽  
Yu Zhao ◽  
Libo Xie ◽  
...  

Abstract Background Tubulointerstitial fibrosis (TIF) is one of the main pathological features of various progressive renal damages and chronic kidney diseases. Mesenchymal stromal cells (MSCs) have been verified with significant improvement in the therapy of fibrosis diseases, but the mechanism is still unclear. We attempted to explore the new mechanism and therapeutic target of MSCs against renal fibrosis based on renal proteomics. Methods TIF model was induced by adenine gavage. Bone marrow-derived MSCs was injected by tail vein after modeling. Renal function and fibrosis related parameters were assessed by Masson, Sirius red, immunohistochemistry, and western blot. Renal proteomics was analyzed using iTRAQ-based mass spectrometry. Further possible mechanism was explored by transfected galectin-3 gene for knockdown (Gal-3 KD) and overexpression (Gal-3 OE) in HK-2 cells with lentiviral vector. Results MSCs treatment clearly decreased the expression of α-SMA, collagen type I, II, III, TGF-β1, Kim-1, p-Smad2/3, IL-6, IL-1β, and TNFα compared with model rats, while p38 MAPK increased. Proteomics showed that only 40 proteins exhibited significant differences (30 upregulated, 10 downregulated) compared MSCs group with the model group. Galectin-3 was downregulated significantly in renal tissues and TGF-β1-induced rat tubular epithelial cells and interstitial fibroblasts, consistent with the iTRAQ results. Gal-3 KD notably inhibited the expression of p-Akt, p-GSK3β and snail in TGF-β1-induced HK-2 cells fibrosis. On the contrary, Gal-3 OE obviously increased the expression of p-Akt, p-GSK3β and snail. Conclusion The mechanism of MSCs anti-renal fibrosis was probably mediated by galectin-3/Akt/GSK3β/Snail signaling pathway. Galectin-3 may be a valuable target for treating renal fibrosis.

2020 ◽  
Author(s):  
Huajun Tang ◽  
Peiyue Zhang ◽  
Lianlin Zeng ◽  
Yu Zhao ◽  
Libo Xie ◽  
...  

Abstract Background: Tubulointerstitial fibrosis (TIF) is one of the main pathological features of various progressive renal damages and chronic kidney diseases. Mesenchymal stromal cells (MSCs) have been verified with significant improvement in the therapy of fibrosis diseases, but the mechanism is still unclear. We attempted to explore the new mechanism and therapeutic target of MSCs against renal fibrosis based on renal proteomics.Methods: TIF model was induced by adenine gavage. Bone marrow derived MSCs was injected by tail vein after modeling. Fibrosis biomarkers or extracellular matrix proteins and histopathological change were assessed by Masson staining, Sirius red staining, immunohistochemistry, and western blot. Renal proteomics was analyzed using iTRAQ-based mass spectrometry.Results: MSCs treatment clearly decreased the expression of α-SMA, collagen type I, II, III, TGF-β1, p-Smad2/3, IL-6, IL-1β, and TNFα compared with model rats, while p38 MAPK increased. 6,213 proteins were identified, but only 40 proteins exhibited significant differences (30 upregulated, 10 downregulated) compared MSCs group with the model group. Bioinformatics analysis revealed that these proteins play important roles in the proliferation, inflammatory and immune responses, apoptosis, phagosome, etc. According to literatures and bioinformatics analysis, the most markedly downregulated protein, galectin3, was further assessed by quantitative PCR and western blot in renal tissues. Galectin3 levels were downregulated in adenine-induced renal tissues and TGF-β1 induced tubular epithelial cells and interstitial fibroblasts in consistent with iTRAQ after MSCs treatment.Conclusion: The founds suggest that galectin3 maybe involves in the antifibrotic mechanisms of MSCs therapy for tubulointerstitial fibrosis as well as a possible therapeutic target.


2020 ◽  
Vol 11 ◽  
pp. 204062232096264
Author(s):  
Dan-Qian Chen ◽  
Xia-Qing Wu ◽  
Lin Chen ◽  
He-He Hu ◽  
Yan-Ni Wang ◽  
...  

Background: Renal fibrosis is the common feature of chronic kidney disease (CKD). However, few drugs specifically target fibrogenesis due to the lack of an effective therapeutic target. Hence, it is urgent to find a therapeutic strategy that inhibits renal fibrosis. Here, we identified that poricoic acid A (PAA) as the modulator of tryptophan hydroxylase-1 (TPH-1), the key enzyme in tryptophan metabolism, exerted potent anti-fibrotic effects in the kidney. Methods: Lentiviral vector, luciferase reporter activity assay and co-immunoprecipitation were used. The animal model of unilateral ureteral obstruction and adenine-induced chronic renal failure as well as transforming growth factor (TGF)-β1-treated epithelial cells NRK-52E and fibroblasts NRK-49F were used. Results: TPH-1 was gradually decreased during CKD progression, while PAA treatment significantly increased TPH-1 expression to suppress renal fibrosis. Pharmacological overexpression of TPH-1 by PAA treatment exhibited anti-fibrosis and was linked to Wnt/β-catenin signaling activity. TPH-1 exhibited anti-fibrotic effects by suppressing epithelial cell injury and fibroblast activation, and PAA promoted TPH-1 expression and then suppressed the Wnt/β-catenin signaling pathway via regulating the protein stability of β-catenin and β-catenin-mediated transcription. TPH-1 overexpression enhanced the anti-fibrotic effects of PAA, while TPH-1 deficiency weakened the anti-fibrotic effects of PAA, indicating that TPH-1 was required for the anti-fibrotic effects of PAA. Conclusion: PAA as a modulator of TPH-1 expression attenuated renal fibrosis through regulating the Wnt/β-catenin signaling pathway by acting on the protein stability of β-catenin and β-catenin-mediated transcription. TPH-1 was required for PAA to exert anti-fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yue Qiu ◽  
Yirui Cao ◽  
Guowei Tu ◽  
Jiawei Li ◽  
Ying Su ◽  
...  

BackgroundRenal fibrosis is inevitable in all progressive chronic kidney diseases (CKDs) and represents a serious public health problem. Immune factors contribute to the progression of renal fibrosis. Thus, it is very possible that immunosuppression cells, such as myeloid-derived suppressor cells (MDSCs), could bring benefits to renal fibrosis. Herein, this study investigated the antifibrotic and reno-protective effect of MDSCs and the possible mechanisms.MethodsMurine and cell models of unilateral ureter obstruction (UUO) renal fibrosis were used. Bone marrow-induced MDSCs and granulocyte–macrophage colony-stimulating factor (GM-CSF) were pretreated before surgery. Kidney weight, pathological injury, extracellular matrix deposition, and epithelial–mesenchymal transition progression were examined. Transforming growth factor (TGF)-β1)/Smad/Snail signaling pathway involvement was investigated through Western blotting and quantitative PCR (qPCR). Accumulation of MDSC, CD4+ T cell, regulatory T (Treg), and T helper 1 (TH1) cell accumulation, and CCL5 and CCR5 expression level in MDSCs and non-MDSCs were evaluated using flow cytometry.ResultsIn vitro- and in vivo-induced MDSCs significantly ameliorated UUO-induced tubulointerstitial fibrosis, inhibited the TGF-β1/Smad/Snail signaling pathway, and enhanced MDSC and Treg infiltration in the kidney while downregulating the TH1 cells. Both in vitro and in vivo experiments confirmed CCL5 elevation in the two MDSC-treated groups.ConclusionIn vitro- and in vivo-induced MDSCs alleviated renal fibrosis similarly through promoting the CCL5–CCR5 axis interaction and TGF-β1/Smad/Snail signaling pathway inhibition. Our results indicate an alternative treatment for renal fibrosis.


2015 ◽  
Vol 36 (5) ◽  
pp. 1911-1927 ◽  
Author(s):  
Lin Weng ◽  
Weiling Wang ◽  
Xiaohong Su ◽  
Yong Huang ◽  
Limin Su ◽  
...  

Background: The cAMP-PKA signaling pathway and TGF-β1-dependent fibrosis pathways are of particular importance in ADPKD progression, but the cross-talk between these pathways remains unclear. Therefore, we used an MDCK-cell model and embryonic kidney-cyst model to study the regulatory role of cAMP-PKA signaling in the TGF-β1 induced fibrotic process. Method and Results: Pkd1flox/flox; Ksp-Cre and Pkd1+/+; Ksp-Cre mice were used as an in vivo model. Increased kidney volume, renal cysts formation and up-regulation of the fibrosis-related proteins TGF-β1, connective tissue growth factor (CTGF), and fibronectin (FN) can be observed in Pkd1flox/flox; Ksp-Cre mice. In an embryonic kidneys-cyst model, TGF-β1, FN and collagen type I were highly expressed. Western blotting revealed the obviously up-regulation of TGF-β1, CTGF, FN and collagen type I expression following forskolin treatment in MDCK cells. Selective PKA inhibition with H89 may partially reversed the above effects. Pretreatment with the TGF-β RI kinase inhibitor VI SB431542 suppressed the increased expression of CTGF, FN and collagen type I caused by forskolin. Our data also indicate that forskolin inhibited TGF-β-induced ERK1/2 phosphorylation and FN up-regulation. ERK inhibition useing PD98059 significantly inhibited the expression of CTGF, FN and collagen type I caused by TGF-β1. Conclusions: The cAMP-PKA signaling pathway can directly promote the production of TGF-β1 and/or TGF-β1-dependent fibrogenetic molecules in MDCK cells and embryonic kidney cysts, but when TGF-β1 and its downstream pathways were highly expressed in MDCK cells, cAMP-PKA had a significantly negative effect on TGF-β1 induced p-ERK1/2 and FN expression.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Mingyi Wang ◽  
Gianfranco Pintus ◽  
Roberta Giordo ◽  
Jing Zhang ◽  
Liqun Jiang ◽  
...  

Collagen deposition, a hallmark of arterial aging that resembles post-injury arterial restenosis, is perpetrated by angiotensin II (Ang II) signaling in arterial wall. Collagen aggregation at sites of arterial injury is regulated by the coordinated signaling of pro-fibrotic TGF-β1 and anti-fibrotic vasorin within VSMCs. The Ang II/TGF-β1/vasorin signaling relationship within VSMCs with aging, however, remains unknown. In vivo studies in old vs. young FXBN rats show that aortic transcription and translation of vasorin markedly decrease with aging. In vitro studies in VSMCs isolated from old vs. young aortae. Ang II-associated reduction of vasorin protein abundance in young VSMCs and age-associated changes in vasorin protein levels are reversed by the AT1 antagonist, Losartan (Los) (Figure). Dual immunolabeling and co-immunoprecipitation demonstrate that the co-incidence and physical interaction of vasorin and TGF-β1 within VSMCs are significantly decreased with aging. Importantly, exposure of young VSMCs to Ang II that increases p-SMAD2/3 and collagen type I production, mimicking old cells, and this effect is abolished or substantially mitigated by Los treatment, overexpression of ectopic vasorin, or exogenous recombinant human-vasorin protein. In contrast, exposure of old VSMCs to Los decreases p-SMAD2/3 and collagen type I production.Thus, an imbalance of the Ang II/TGF-β1/vasorin signaling cascade, a feature of the aged arterial wall, enhances the collagen production by VSMCs. Maintaining this signaling balance is a novel measure to retard adverse extracellular matrix remodeling, a determinant of arterial stiffening with aging. (MW and GP co-first authors)


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Farhan Rizvi ◽  
Ramail Siddiqui ◽  
Alessandra DeFranco ◽  
Alisher Holmuhamedov ◽  
Hao Xu ◽  
...  

Background: Ventricular fibrosis leads to progressive cardiac dysfunction and heart failure (HF). Statins are reported to reduce cardiac fibrosis through the cholesterol-independent pathway, but mechanisms remain elusive. We hypothesize simvastatin reduced TGF-β1-induced ventricular fibrosis through activation of SMAD protein phosphatase Mg 2+ /Mn 2+ -1A (PPM1A), -2A (PP2A). Methods: In the absence and presence of TGF-β1 (5ng) with or without simvastatin (1μM), the rate of fibroblast proliferation (doubling time), myofibroblast differentiation (ICC), α-SMA mRNA (RT-PCR) and protein expression (Western blot) and the release of collagen synthesis markers, pro-collagen type I C-terminal peptide (PICP) and pro-collagen type III N-terminal peptide (PIIINP), in the media (ELISA) were determined along with protein interaction between SMAD2/3 and PPM1A or PP2A (Co-IP) and SMAD2/3 phosphorylation (Western blot). Results: Simvastatin reduced the effect of TGF-β1 on hVF proliferation by 47% (50000 to 26500), p<0.01; myofibroblast differentiated population from 48% (avg 48/100) to 11% (avg 11/100), p<0.01; expression of α-SMA mRNA by 76%, p<0.01; and protein by 60%, p<0.05. Simvastatin also decreased release of PICP by 66%, p<0.01, and PIIINP by 83%, p<0.01, into the media. Time-dependent increases in SMAD2/3 phosphorylation were reduced by simvastatin through activation of protein phosphatases PPM1A and PP2A by interacting with SMAD2/3. Conclusion: Involvement of PPM1A and PP2A in the anti-fibrotic effect of simvastatin reveals novel signaling mediators that may be selectively targeted for prevention of myocardial injury-induced ventricular fibrosis and HF.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Domonkos Pap ◽  
Apor Veres-Székely ◽  
Beáta Szebeni ◽  
Réka Rokonay ◽  
Anna Ónody ◽  
...  

Abstract Background Recently, the role of IL-19, IL-20 and IL-24 has been reported in renal disorders. However, still little is known about their biological role. Methods Localization of IL-20RB was determined in human biopsies and in the kidneys of mice that underwent unilateral ureteral obstruction (UUO). Renal Il19, Il20 and Il24 expression was determined in ischemia/reperfusion, lipopolysaccharide, streptozotocin, or UUO induced animal models of kidney diseases. The effects of H2O2, LPS, TGF-β1, PDGF-B and IL-1β on IL19, IL20 and IL24 expression was determined in peripheral blood mononuclear cells (PBMCs). The extents of extracellular matrix (ECM) and α-SMA, Tgfb1, Pdgfb, and Ctgf expression were determined in the kidneys of Il20rb knockout (KO) and wild type (WT) mice following UUO. The effect of IL-24 was also examined on HK-2 tubular epithelial cells and NRK49F renal fibroblasts. Results IL-20RB was present in the renal biopsies of patients with lupus nephritis, IgA and diabetic nephropathy. Amount of IL-20RB increased in the kidneys of mice underwent UUO. The expression of Il19, Il20 and Il24 increased in the animal models of various kidney diseases. IL-1β, H2O2 and LPS induced the IL19, IL20 and IL24 expression of PBMCs. The extent of ECM, α-SMA, fibronectin, Tgfb1, Pdgfb, and Ctgf expression was lower in the kidney of Il20rb KO compared to WT mice following UUO. IL-24 treatment induced the apoptosis and TGF-β1, PDGF-B, CTGF expression of HK-2 cells. Conclusions Our data confirmed the significance of IL-19, IL-20 and IL-24 in the pathomechanism of renal diseases. Furthermore, we were the first to demonstrate the pro-fibrotic effect of IL-24.


Renal Failure ◽  
2020 ◽  
Vol 42 (1) ◽  
pp. 513-522 ◽  
Author(s):  
Lei Liu ◽  
Xinlu Pang ◽  
Wenjun Shang ◽  
Guiwen Feng ◽  
Zhigang Wang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jihong Zhan ◽  
Mingjie Liu ◽  
Lijun Pan ◽  
Liqun He ◽  
Yinxue Guo

Fibrosis is involved in the pathogenesis of kidney diseases. We previously discovered that Rosa roxburghii fruit (Cili) possesses antifibrosis property in chronic renal disease, but the mechanisms are unknown. We hypothesized that Cili might prevent fibrosis development through mediating TGF-β/Smads signaling, which is known to be involved in renal fibrosis. This study aimed to confirm the effects of freeze-dried Cili powder in a rat model of unilateral ureteral obstruction (UUO) and examine TGF-β/Smads signaling. Rats were randomized to (n=12/group): sham operation, UUO, UUO with losartan, UUO with moderate Cili dose (3 g/kg/d), and UUO with high Cili dose (6 g/kg/d). The rats were sacrificed after 14 days of treatment. Collagen deposition was tested using Masson’s staining. TGF-β/Smads signaling was examined by qRT-PCR, western blot, and immunohistochemistry. Rats in the UUO group showed excessive deposition of collagen in kidney interstitium, accompanied with high levels of renal 8-hydroxy-2′-deoxyguanosine, renal malondialdehyde, blood urea nitrogen (BUN), serum creatinine (Scr), and proteinuria (all P<0.05). Cili powder efficiently alleviated the pathological changes and oxidative stress in the kidneys of UUO rats, and decreased BUN, Scr and proteinuria (all P<0.05). Cili powder also inhibited the upregulation of TGFB1, TGFBR1, TGFBR2, SMAD2, and SMAD3 and reversed the downregulation of SMAD7 in obstructed kidneys (mRNA and protein) (all P<0.05). In summary, the results suggest that Cili freeze-dried powder effectively prevents renal fibrosis and impairment in UUO rats, which is associated with the inhibition of oxidative stress and TGF-β1/Smads signaling.


Sign in / Sign up

Export Citation Format

Share Document