scholarly journals Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaoling Yao ◽  
Yue Zhou ◽  
Hui Wang ◽  
Feiyan Deng ◽  
Yongyi Chen ◽  
...  

Abstract Background Radiation-induced dermatitis is a serious side effect of radiotherapy, and very few effective treatments are currently available for this condition. We previously demonstrated that apoptosis is an important feature of radiation-induced dermatitis and adipose-derived stem cells (ADSCs) are one of the most promising types of stem cells that have a protective effect on acute radiation-induced dermatitis. Cathepsin F (CTSF) is a recently discovered protein that plays an important role in apoptosis. In this study, we investigated whether ADSCs affect chronic radiation-induced dermatitis, and the underlying mechanisms involved. Methods ADSCs were isolated from male Sprague-Dawley (SD) rats and characterized. For in vivo studies, rats were randomly divided into control and ADSC-treated groups, and cultured ADSCs were transplanted into radiation-induced dermatitis model rats. The effects of ADSC transplantation were determined by skin damage scoring, histopathological analysis, electron microscopy, immunohistochemical staining, and western blotting analysis of apoptosis-related proteins. To evaluate the effects of ADSCs in vitro, radiation-induced apoptotic cells were treated with ADSC culture supernatant, and apoptosis-related protein expression was investigated by TUNEL staining, flow cytometry, and western blotting. Results In the in vivo studies, skin damage, inflammation, fibrosis, and apoptosis were reduced and hair follicle and sebaceous gland regeneration were enhanced in the ADSC group compared with the control group. Further, CTSF and downstream pro-apoptotic proteins (Bid, BAX, and caspase 9) were downregulated, while anti-apoptotic proteins (Bcl-2 and Bcl-XL) were upregulated. In vitro, ADSCs markedly attenuated radiation-induced apoptosis, downregulated CTSF and downstream pro-apoptotic proteins, and upregulated anti-apoptotic proteins. Conclusion ADSCs protect against radiation-induced dermatitis by exerting an anti-apoptotic effect through inhibition of CTSF expression. ADSCs may be a good therapeutic candidate to prevent the development of radiation-induced dermatitis.

2015 ◽  
Vol 39 (5) ◽  
pp. 778-782 ◽  
Author(s):  
Kyung Hee Min ◽  
Jin Hwan Byun ◽  
Chan Yeong Heo ◽  
Eun Hee Kim ◽  
Hye Yeon Choi ◽  
...  

2010 ◽  
Vol 16 (5) ◽  
pp. 1041-1050 ◽  
Author(s):  
Min Wang ◽  
Haiyun Pei ◽  
Lei Zhang ◽  
Lidong Guan ◽  
Rui Zhang ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972110354
Author(s):  
Eun-Jung Yoon ◽  
Hye Rim Seong ◽  
Jangbeen Kyung ◽  
Dajeong Kim ◽  
Sangryong Park ◽  
...  

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


2009 ◽  
Vol 21 (03) ◽  
pp. 149-155 ◽  
Author(s):  
Hsu-Wei Fang

Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.


2017 ◽  
Vol 242 (18) ◽  
pp. 1765-1771 ◽  
Author(s):  
Guinea BC Cardoso ◽  
Erivelto Chacon ◽  
Priscila GL Chacon ◽  
Pedro Bordeaux-Rego ◽  
Adriana SS Duarte ◽  
...  

Our hypothesis was to investigate the fatty acid potential as a bone induction factor. In vitro and in vivo studies were performed to evaluate this approach. Oleic acid was used in a 0.5 wt.% concentration. Polycaprolactone was used as the polymeric matrix by combining solvent-casting and particulate-leaching techniques, with a final porosity of 70 wt.%, investigated by SEM images. Contact angle measurements were produced to investigate the influence of oleic acid on polycaprolactone chains. Cell culture was performed using adipocyte-derived stem cells to evaluate biocompatibility and bioactivity properties. In addition, in vivo studies were performed to evaluate the induction potential of oleic acid addition. Adipocyte-derived stem cells were used to provide differentiation after 21 days of culture. Likewise, information were obtained with in vivo data and cellular invagination was observed on both scaffolds (polycaprolactone and polycaprolactone /oleic acid); interestingly, the scaffold with oleic acid addition demonstrated that cellular migrations are not related to the surrounding tissue, indicating bioactive potential. Our hypothesis is that fatty acid may be used as a potential induction factor for bone tissue engineering. The study’s findings indicate oleic acid as a possible agent for bone induction, according to data on cell differentiation, proliferation, and migration. Impact statement The biomaterial combined in this study on bone regeneration is innovative and shows promising results in the treatment of bone lesions. Polycaprolactone (PCL) and oleic acid have been studied separately. In this research, we combined biomaterials to assess the stimulus and the speed of bone healing.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yanli Liu ◽  
Fen Yang ◽  
Shengying Liang ◽  
Qing Liu ◽  
Sulei Fu ◽  
...  

Peripheral nerve injuries are typically caused by either trauma or medical disorders, and recently, stem cell-based therapies have provided a promising treatment approach. Menstrual blood-derived endometrial stem cells (MenSCs) are considered an ideal therapeutic option for peripheral nerve repair due to a noninvasive collection procedure and their high proliferation rate and immunological tolerance. Here, we successfully isolated MenSCs and examined their biological characteristics including their morphology, multipotency, and immunophenotype. Subsequent in vitro studies demonstrated that MenSCs express high levels of neurotrophic factors, such as NT3, NT4, BDNF, and NGF, and are capable of transdifferentiating into glial-like cells under conventional induction conditions. Moreover, upregulation of N-cadherin (N-cad) mRNA and protein expression was observed after neurogenic differentiation. In vivo studies clearly showed that N-cad knockdown via in utero electroporation perturbed the migration and maturation of mouse neural precursor cells (NPCs). Finally, a further transfection assay also confirmed that N-cad upregulation in MenSCs results in the expression of S100. Collectively, our results confirmed the paracrine effect of MenSCs on neuroprotection as well as their potential for transdifferentiation into glial-like cells and demonstrated that N-cad upregulation promotes the neurogenic differentiation of MenSCs, thereby providing support for transgenic MenSC-based therapy for peripheral nerve injury.


2019 ◽  
Vol 6 (6) ◽  
pp. 3213-3221
Author(s):  
Hieu Liem Pham ◽  
Phuc Van Pham

Introduction: The senescence of stem cells is the primary reason that causes aging of stem cell-containing tissues. Some hypotheses have suggested that high glucose concentration in diabetic patients is the main factor that causes senescence of cells in those patients. This study aimed to evaluate the effects of high glucose concentrations on the senescence of adipose-derived stem cells (ADSCs). Methods: ADSCs were isolated and expanded from human adipose tissues. They were characterized and confirmed as mesenchymal stem cells (MSCs) by expression of surface markers, their shape, and in vitro differentiation potential. They were then cultured in 3 different media- that contained 17.5 mM, 35 mM, or 55 mM of D-glucose. The senescent status of ADSCs was recorded by the expression of the enzyme beta-galactosidase, cell proliferation, and doubling time. Real-time RT-PCR was used to evaluate the expression of p16, p21, p53 and mTOR. Results: The results showed that high glucose concentrations (35 mM and 55 mM) in the culture medium induced senescence of human ADSCs. The ADSCs could progress to the senescent status quicker than those cultured in the lower glucose-containing medium (17.5 mM). The senescent state was related to the up-regulation of p16 and mTOR genes. Conclusion: These results suggest that high glucose in culture medium can trigger the expression of p16 and mTOR genes which cause early senescence in ADSCs. Therefore, ADSCs should be cultured in low glucose culture medium, or normal glucose concentration, to extend their life in vitro as well as in vivo.  


2021 ◽  
pp. 1-11
Author(s):  
Yuzaburo Shimizu ◽  
Joy Gumin ◽  
Feng Gao ◽  
Anwar Hossain ◽  
Elizabeth J. Shpall ◽  
...  

OBJECTIVE Delta-24-RGD is an oncolytic adenovirus that is capable of replicating in and killing human glioma cells. Although intratumoral delivery of Delta-24-RGD can be effective, systemic delivery would improve its clinical application. Bone marrow–derived human mesenchymal stem cells (BM-hMSCs) obtained from healthy donors have been investigated as virus carriers. However, it is unclear whether BM-hMSCs can be derived from glioma patients previously treated with marrow-toxic chemotherapy or whether such BM-hMSCs can deliver oncolytic viruses effectively. Herein, the authors undertook a prospective clinical trial to determine the feasibility of obtaining BM-hMSCs from patients with recurrent malignant glioma who were previously exposed to marrow-toxic chemotherapy. METHODS The authors enrolled 5 consecutive patients who had been treated with radiation therapy and chemotherapy. BM aspirates were obtained from the iliac crest and were cultured to obtain BM-hMSCs. RESULTS The patient-derived BM-hMSCs (PD-BM-hMSCs) had a morphology similar to that of healthy donor–derived BM-hMSCs (HD-BM-hMSCs). Flow cytometry revealed that all 5 cell lines expressed canonical MSC surface markers. Importantly, these cultures could be made to differentiate into osteocytes, adipocytes, and chondrocytes. In all cases, the PD-BM-hMSCs homed to intracranial glioma xenografts in mice after intracarotid delivery as effectively as HD-BM-hMSCs. The PD-BM-hMSCs loaded with Delta-24-RGD (PD-BM-MSC-D24) effectively eradicated human gliomas in vitro. In in vivo studies, intravascular administration of PD-BM-MSC-D24 increased the survival of mice harboring U87MG gliomas. CONCLUSIONS The authors conclude that BM-hMSCs can be acquired from patients previously treated with marrow-toxic chemotherapy and that these PD-BM-hMSCs are effective carriers for oncolytic viruses.


Sign in / Sign up

Export Citation Format

Share Document