scholarly journals Label-free separation of neuroblastoma patient-derived xenograft (PDX) cells from hematopoietic progenitor cell products by acoustophoresis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Franziska Olm ◽  
Lena Panse ◽  
Josefina H. Dykes ◽  
Daniel Bexell ◽  
Thomas Laurell ◽  
...  

Abstract Background Graft-contaminating tumor cells correlate with inferior outcome in high-risk neuroblastoma patients undergoing hematopoietic stem cell transplantation and can contribute to relapse. Motivated by the potential therapeutic benefit of tumor cell removal as well as the high prognostic and diagnostic value of isolated circulating tumor cells from stem cell grafts, we established a label-free acoustophoresis-based microfluidic technology for neuroblastoma enrichment and removal from peripheral blood progenitor cell (PBPC) products. Methods Neuroblastoma patient-derived xenograft (PDX) cells were spiked into PBPC apheresis samples as a clinically relevant model system. Cells were separated by ultrasound in an acoustophoresis microchip and analyzed for recovery, purity and function using flow cytometry, quantitative real-time PCR and cell culture. Results PDX cells and PBPCs showed distinct size distributions, which is an important parameter for efficient acoustic separation. Acoustic cell separation did not affect neuroblastoma cell growth. Acoustophoresis allowed to effectively separate PDX cells from spiked PBPC products. When PBPCs were spiked with 10% neuroblastoma cells, recoveries of up to 98% were achieved for PDX cells while more than 90% of CD34+ stem and progenitor cells were retained in the graft. At clinically relevant tumor cell contamination rates (0.1 and 0.01% PDX cells in PBPCs), neuroblastoma cells were depleted by more than 2-log as indicated by RT-PCR analysis of PHOX2B, TH and DDC genes, while > 85% of CD34+ cells could be retained in the graft. Conclusion These results demonstrate the potential use of label-free acoustophoresis for PBPC processing and its potential to develop label-free, non-contact tumor cell enrichment and purging procedures for future clinical use.

Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4934-4943 ◽  
Author(s):  
Maite Urbieta ◽  
Isabel Barao ◽  
Monica Jones ◽  
Roland Jurecic ◽  
Angela Panoskaltsis-Mortari ◽  
...  

Abstract CD4+CD25+FoxP3+ regulatory T cells (Tregs) possess the capacity to modulate both adaptive and innate immune responses. We hypothesized that Tregs could regulate hematopoiesis based on cytokine effector molecules they can produce. The studies here demonstrate that Tregs can affect the differentiation of myeloid progenitor cells. In vitro findings demonstrated the ability of Tregs to inhibit the differentiation of interleukin-3 (IL-3)/stem cell factor (colony-forming unit [CFU]-IL3)–driven progenitor cells. Inhibitory effects were mediated by a pathway requiring cell-cell contact, major histocompatibility complex class II expression on marrow cells, and transforming growth factor-β. Importantly, depletion of Tregs in situ resulted in enhanced CFU-IL3 levels after bone marrow transplantation. Cotransplantation of CD4+FoxP3+gfp Tregs together with bone marrow was found to diminish CFU-IL3 responses after transplantation. To address the consequence of transplanted Tregs on differentiated progeny from these CFU 2 weeks after hematopoietic stem cell transplantation, peripheral blood complete blood counts were performed and examined for polymorphonuclear leukocyte content. Recipients of cotransplanted Tregs exhibited diminished neutrophil counts. Together, these findings illustrate that both recipient and donor Tregs can influence hematopoietic progenitor cell activity after transplantation and that these cells can alter responses outside the adaptive and innate immune systems.


2002 ◽  
Vol 20 (8) ◽  
pp. 2142-2149 ◽  
Author(s):  
Gregory A. Yanik ◽  
John E. Levine ◽  
Katherine K. Matthay ◽  
James C. Sisson ◽  
Barry L. Shulkin ◽  
...  

PURPOSE: The survival for children with relapsed or metastatic neuroblastoma remains poor. More effective regimens with acceptable toxicity are required to improve prognosis. Iodine-131–metaiodobenzylguanidine (131I-MIBG) selectively targets radiation to catecholamine-producing cells, including neuroblastoma cells. A pilot study was performed to examine the feasibility of a novel regimen combining 131I-MIBG and myeloablative chemotherapy with autologous stem-cell rescue. PATIENTS AND METHODS: Twelve patients with neuroblastoma were treated after relapse (five patients) or after induction therapy (seven patients). Eight patients had metastatic and four had localized disease at the time of therapy. All patients received 131I-MIBG 12 mCi/kg on day −21, followed by carboplatin (1,500 mg/m2), etoposide (800 mg/m2), and melphalan (210 mg/m2) administered from day −7 to day −4. Autologous peripheral-blood stem cells or bone marrow were infused on day 0. Engraftment, toxicity, and response rates were evaluated. RESULTS: The 131I-MIBG infusion and myeloablative chemotherapy were both well tolerated. Grade 2 to 3 oral mucositis was the predominant nonhematopoietic toxicity, occurring in all patients. The median times to neutrophil (≥ 0.5 × 103/μL) and platelet (≥ 20 × 103/μL) engraftment were 10 and 28 days, respectively. For the eight patients treated with metastatic disease, three achieved complete response and two had partial responses by day 100 after transplantation. CONCLUSION: Treatment with 131I-MIBG in combination with myeloablative chemotherapy and hematopoietic stem-cell rescue is feasible with acceptable toxicity. Future study is warranted to examine the efficacy of this novel therapy.


2000 ◽  
Vol 18 (24) ◽  
pp. 4077-4085 ◽  
Author(s):  
M. Fevzi Ozkaynak ◽  
Paul M. Sondel ◽  
Mark D. Krailo ◽  
Jacek Gan ◽  
Brad Javorsky ◽  
...  

PURPOSE: Ganglioside GD2is strongly expressed on the surface of human neuroblastoma cells. It has been shown that the chimeric human/murine anti-GD2monoclonal antibody (ch14.18) can induce lysis of neuroblastoma cells by antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. The purposes of the study were (1) to determine the maximum-tolerated dose (MTD) of ch14.18 in combination with standard dose granulocyte-macrophage colony-stimulating factor (GM-CSF) for patients with neuroblastoma who recently completed hematopoietic stem-cell transplantation (HSCT), and (2) to determine the toxicities of ch14.18 with GM-CSF in this setting.PATIENTS AND METHODS: Patients became eligible when the total absolute phagocyte count (APC) was greater than 1,000/μL after HSCT. ch14.18 was infused intravenously over 5 hours daily for 4 consecutive days. Patients received GM-CSF 250 μg/m2/d starting at least 3 days before ch14.18 and continued for 3 days after the completion of ch14.18. The ch14.18 dose levels were 20, 30, 40, and 50 mg/m2/d. In the absence of progressive disease, patients were allowed to receive up to six 4-day courses of ch14.18 therapy with GM-CSF. Nineteen patients with neuroblastoma were treated.RESULTS: A total of 79 courses were administered. No toxic deaths occurred. The main toxicities were severe neuropathic pain, fever, nausea/vomiting, urticaria, hypotension, mild to moderate capillary leak syndrome, and neurotoxicity. Three dose-limiting toxicities were observed among six patients at 50 mg/m2/d: intractable neuropathic pain, grade 3 recurrent urticaria, and grade 4 vomiting. Human antichimeric antibody developed in 28% of patients.CONCLUSION: ch14.18 can be administered with GM-CSF after HSCT in patients with neuroblastoma with manageable toxicities. The MTD is 40 mg/m2/d for 4 days when given in this schedule with GM-CSF.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 2169-2174 ◽  
Author(s):  
Patrick Stiff ◽  
Bohao Chen ◽  
Wilbur Franklin ◽  
David Oldenberg ◽  
Eric Hsi ◽  
...  

Abstract The collection of small aliquots of bone marrow (BM), followed by ex vivo expansion for autologous transplantation may be less morbid, and more cost-effective, than typical BM or blood stem cell harvesting. Passive elimination of contaminating tumor cells during expansion could reduce reinoculation risks. Nineteen breast cancer patients underwent autotransplants exclusively using ex vivo expanded small aliquot BM cells (900-1200 × 106). BM was expanded in media containing recombinant flt3 ligand, erythropoietin, and PIXY321, using stromal-based perfusion bioreactors for 12 days, and infused after high-dose chemotherapy. Correlations between cell dose and engraftment times were determined, and immunocytochemical tumor cell assays were performed before and after expansion. The median volume of BM expanded was 36.7 mL (range 15.8-87.0). Engraftment of neutrophils greater than 500/μL and platelets greater than 20 000/μL were 16 (13-24) and 24 (19-45) days, respectively; 1 patient had delayed platelet engraftment, even after infusion of back-up BM. Hematopoiesis is maintained at 24 months, despite posttransplant radiotherapy in 18 of the 19 patients. Transplanted CD34+/Lin−(lineage negative) cell dose correlated with neutrophil and platelet engraftment, with patients receiving greater than 2.0 × 105 CD34+/Lin− cells per kilogram, engrafting by day 28. Tumor cells were observed in 1 of the 19 patients before expansion, and in none of the 19 patients after expansion. It is feasible to perform autotransplants solely with BM cells grown ex vivo in perfusion bioreactors from a small aliquot. Engraftment times are similar to those of a typical 1000 to 1500 mL BM autotransplant. If verified, this procedure could reduce the risk of tumor cell reinoculation with autotransplants and may be valuable in settings in which small stem cell doses are available, eg, cord blood transplants.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3533-3545 ◽  
Author(s):  
Bhavana Joneja ◽  
Hong-Chi Chen ◽  
Dhaya Seshasayee ◽  
Amy L. Wrentmore ◽  
Don M. Wojchowski

Abstract Studies of hematopoietic progenitor cell development in vivo, ex vivo, and in factor-dependent cell lines have shown that c-kit promotes proliferation through synergistic effects with at least certain type 1 cytokine receptors, including the erythropoietin (Epo) receptor. Presently, c-kit is shown to efficiently support both mitogenesis and survival in the FDCP1 cell subline, FDC2. In this system, mitogenic synergy with c-kit was observed for ectopically expressed wild-type Epo receptors (wt-ER), an epidermal growth factor (EGF) receptor/Epo receptor chimera, and a highly truncated Epo receptor construct ER-Bx1. Thus, the Epo receptor cytoplasmic box 1 subdomain appears, at least in part, to mediate mitogenic synergy with c-kit. In studies of potential effectors of this response, Jak2 tyrosine phosphorylation was shown to be induced by Epo, but not by stem cell factor (SCF). In addition and in contrast to signaling in Mo7e and BM6 cell lines, in FDC2-ER cells SCF and Epo each were shown to rapidly activate Pim 1 gene expression. Recently, roles also have been suggested for the nuclear trans-factor GATA-1 in regulating progenitor cell proliferation. In FDC2-ER cells, the ectopic expression of GATA-1 had no detectable effect on Epo inhibition of apoptosis. However, GATA-1 expression did result in a selective and marked inhibition in mitogenic responsiveness to SCF and to a decrease in c-kit transcript expression. These studies of SCF and Epo signaling in FDC2–wt-ER cells serve to functionally map the ERB1 region as a c-kit–interactive domain, suggest that Pim1 might contribute to SCF and Epo mitogenic synergy and support the notion that SCF and Epo may act in opposing ways during red cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document