scholarly journals Desoxyrhapontigenin attenuates neuronal apoptosis in an isoflurane-induced neuronal injury model by modulating the TLR-4/cyclin B1/Sirt-1 pathway

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Feng Liang ◽  
Xin Fu ◽  
Yunpengfei Li ◽  
Fanglei Han

Abstract This study investigated the protective effect of desoxyrhapontigenin (DOP) against isoflurane (ISF)-induced neuronal injury in rats. Neuronal injury was induced in pups by exposing them to 0.75% ISF on postnatal day 7 with 30% oxygen for 6 h. The pups were treated with DOP 10 mg/kg, i.p., for 21 days after ISF exposure. The protective effect of DOP was estimated by assessing cognitive function using the neurological score and the Morris water maze. Neuronal apoptosis was assessed in the hippocampus using the TUNEL assay, and protein expression of caspase-3, Bax, and Bcl-2 was measured by Western blotting. The levels of cytokines and oxidative stress parameters were assessed by ELISA. Western blotting and RT-PCR were performed to measure the expression of NF-kB, TLR-4, Sirt-1, and cyclin B1 protein in the brain. The cognitive function and neurological function scores were improved in the DOP group compared with the ISF group. Moreover, DOP treatment reduced the number of TUNEL-positive cells and the expression of caspase-3, Bax, and Bcl-2 protein in the brains of rats with neuronal injury. The levels of mediators of inflammation and oxidative stress were reduced in the brain tissue of the DOP group. Treatment with DOP attenuated the protein expression of TLR-4, NF-kB, cyclin B1, and Sirt-1 in the brain tissue of rats with neuronal injury. In conclusion, DOP ameliorates neuronal apoptosis and improves cognitive function in rats with ISF-induced neuronal injury. Moreover, DOP treatment can prevent neuronal injury by regulating the TLR-4/cyclin B1/Sirt-1 pathway.

2021 ◽  
Author(s):  
Yali Li ◽  
Jun Long ◽  
Libo Li ◽  
Lijuan Liu ◽  
Ziyao Yu ◽  
...  

Abstract Objectives: Using a PC12 cell model with Hydrogen peroxide, we investigated the neuronal apoptotic gene expression and neuronal apoptosis after oxidative stress damage. We further explored protective effect of pioglitazone and its mechanisms. Methods: Taking H2O2 treated PC12 cells as oxidative stress damaged neuron models, MTT and flow cytometry methods were performed to measure the influence of H2O2 on neuronal apoptosis and the protective effect of pioglitazone. Neuronal apoptosis was detected by TUNEL staining. Real-time PCR and Western blot methods were performed to investigate the expression of PPARγ, Bax, Bcl-2 and Caspase-3. Results: H2O2 can induce the apoptosis of PC12 cells in an dose- and time-dependent manner. And H2O2 (100μmol/L, 24h) can induce the expression of PPARγ mRNA and protein (p<0.01). Pioglitazone significantly up-regulated the protein expression of Bax, caspase-3(p<0.01) and decreased the expression of Bcl-2(p<0.01). Pioglitazone can dose-dependently decrease the apoptotic ratio of H2O2-damaged PC12 cells. 1.0×10-6 mol/L pioglitazone can induce PPARγ mRNA and protein expression. Pioglitazone decreased Bax, caspase-3 protein expression(p<0.01) and increased Bcl-2 protein expression(p<0.01), thus down-regulated the expression ratio of Bax/Bcl-2(p<0.01) and decreased the apoptotic ratio of PC12 cells(p<0.01). GW9662, the antagonist of PPARγ, and PPARγ siRNA can offset the protective effect of pioglitazone on PC12 cells to different degrees(p<0.01). Conclusions: hydrogen peroxide can induce apoptosis of PC12 cells in dose- and time-dependent manner. PPARγ activation by pioglitazone can significantly decreased expression of Bax/Bcl-2 and Caspase-3, thus plays a part in neuron protective effects on H2O2-treated PC12 cells. The antagonist and RNAi of PPARγ can offset protective effect of pioglitazone to different degree, which indicates PPARγ activation exerts protective role in decreasing the apoptosis of PC12 cells.


2020 ◽  
Vol 55 (4) ◽  
pp. 357-366
Author(s):  
Wenyang Jin ◽  
Mizhu Sun ◽  
Bingbing Yuan ◽  
Runzhi Wang ◽  
Hongtao Yan ◽  
...  

Abstract Aims Ethanol is a small molecule capable of interacting with numerous targets in the brain, the mechanisms of which are complex and still poorly understood. Studies have revealed that ethanol-induced hippocampal neuronal injury is associated with oxidative stress. Grape seed procyanidin (GSP) is a new type of antioxidant that is believed to scavenge free radicals and be anti-inflammatory. This study evaluated the ability and mechanism by which the GSP improves ethanol-induced hippocampal neuronal injury. Methods Primary cultures of hippocampal neurons were exposed to ethanol (11, 33 and 66 mM, 1, 4, 8, 12 and 24 h) and the neuroprotective effects of GSP were assessed by evaluating the activity of superoxide dismutase (SOD), the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and cell morphology. Results Our results indicated that GSP prevented ethanol-induced neuronal injury by reducing the levels of MDA and LDH, while increasing the activity of SOD. In addition, GSP increased the number of primary dendrites and total dendritic length per cell. Conclusion Together with previous findings, these results lend further support to the significance of developing GSP as a therapeutic tool for use in the treatment of alcohol use disorders.


2011 ◽  
Vol 30 (10) ◽  
pp. 1626-1634 ◽  
Author(s):  
Amit K Sharma ◽  
Swapan K Bhattacharya ◽  
Naresh Khanna ◽  
Ashok K Tripathi ◽  
Tarun Arora ◽  
...  

Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.


2017 ◽  
Vol 41 (5) ◽  
pp. 2027-2036 ◽  
Author(s):  
Litao Li ◽  
Jinghong Chen ◽  
Sujuan Sun ◽  
Jingru Zhao ◽  
Xiaoli Dong ◽  
...  

Background/Aims: Estradiol (EST) reduces the risk of stroke and decreases the incidence and progression of the disease because of its neuroprotective roles in inhibiting cell death that occurs in response to a variety of neuronal stimuli such as inflammation and oxidative stress. In this study, we determined the role played by autophagy and Nrf2-ARE signal pathways in the hippocampus regions in modulating cerebral ischemia under different EST conditions. Methods: Western blot analysis and ELISA were used to determine the protein expression of autophagy and Nrf2-ARE pathways; and the levels of pro-inflammatory cytokines (PICs) and a key marker of oxidative stress. Results: Lacking of EST amplifies autophagy and attenuates Nrf2-ARE pathway in the hippocampus CA1 region. Blocking autophagy alleviates neurological deficits following cerebral ischemia with lacking of EST levels and the effects of autophagy are associated with PIC and oxidative stress. Conclusions: EST influences the protein expression of autophagy and Nrf2-ARE signaling in the brain, which is linked to the pathophysiological processes of PICs and oxidative stress. Moreover, inhibition of autophagy plays a beneficial role in modulating neurological deficits after cerebral ischemia observed under conditions of a lower level of EST.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


Sign in / Sign up

Export Citation Format

Share Document