scholarly journals Joint optimization of BS-VS association and power control in secure HSR communication systems

Author(s):  
Hao Xu ◽  
Lu Yan ◽  
Haixiang Liu ◽  
Ke Li ◽  
Jian Wang

AbstractIn this paper, the secure transmission for high-speed railway (HSR) communication system is studied. The considered HSR wireless communication system consists of a macro base station, B roadside base stations, and K vehicle stations (VSs) on the top of the train, and the eavesdropping user is a mobile unmanned aerial vehicle (UAV). We consider maximizing the sum of the minimum security rate of each time slot as the objective function, and the constraint conditions contain the quality of service (QoS), switch requirements and the total power constraint. The original optimization problem is mixed-integer and non-convex, it is intractable to solve directly. The block coordinate descent (BCD) method is applied, and the original problem can be decoupled into two sub-problems. The one is the joint BS-VS association problem, and the other is the power control problem. The first sub-problem of optimizing BS-VS association can be solved by the successive convex approximation (SCA) algorithm, and the second one of optimizing transmit power can be solved by the lagrangian dual method. Simulation results show that the proposed algorithms have good convergence.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2021 ◽  
Author(s):  
Shuo Zhang ◽  
Shuo Shi ◽  
Tianming Feng ◽  
Xuemai Gu

Abstract Unmanned aerial vehicles (UAVs) have been widely used in communication systems due to excellent maneuverability and mobility. The ultra-high speed, ultra-low latency, and ultra-high reliability of 5th generation wireless systems (5G) have further promoted vigorous development of UAVs. Compared with traditional means of communication, UAV can provide services for ground terminal without time and space constraints, so it is often used as air base station (BS). Especially in emergency communications and rescue, it provides temporary communication signal coverage service for disaster areas. In the face of large-scale and scattered user coverage tasks, UAV's trajectory is an important factor affecting its energy consumption and communication performance. In this paper, we consider a UAV emergency communication network where UAV aims to achieve complete coverage of potential underlying D2D users (DUs). The trajectory planning problem is transformed into the deployment and connection problem of stop points (SPs). Aiming at trajectory length and sum throughput, two trajectory planning algorithms based on K-means are proposed. Due to the non-convexity of sum throughput optimization, we present a sub-optimal solution by using the successive convex approximation (SCA) method. In order to balance the relationship between trajectory length and sum throughput, we propose a joint evaluation index which is used as an objective function to further optimize trajectory. Simulation results show the validity of the proposed algorithms which have advantages over the well-known benchmark scheme in terms of trajectory length and sum throughput.


2021 ◽  
Author(s):  
James Gaston

The work area of a team of small robots is limited by their inability to traverse a very common obstacle: stairs. We present a complete integrated control architecture and communication strategy for a system of reconfigurable robots that can climb stairs. A modular robot design is presented which allows the robots to dynamically reconfigure to traverse certain obstacles. This thesis investigates the implementation of a system of autonomous robots which can cooperatively reconfigure themselves to collectively travers obstacle such as stairs. We present a complete behaviorand communication system which facilitates this autonomous reconfiguration. The layered behavior-based control system is fault-tolerant and extends the capabilities of a control architecture known as ALLIANCE. Behavior classes are introduced as mechanism for managing ordering dependencies and monitoring a robot's progress through a particular task. The communication system compliments the behavioral control and iimplementsinherent robot failure detection without the need for a base station or external monitor. The behavior and communication systems are validated by implementing them ona mobile robot platform synthesized specifically for this research. Experimental trials showed that the implementation of the behavior control systems was successful. The control system provided robust, fault-tolerant performance even when robots failed to perform docking tasks while recongifuring. Once the robots reconfigure to form a chain, a different control scheme based on gait control tables coordinates the individual movements of the robots. Several successful stair climbing trials were accomplished. Improvements to the mechanical design are proposed.


2014 ◽  
Vol 543-547 ◽  
pp. 2323-2328
Author(s):  
Fan Xin Zeng ◽  
Zhen Yu Zhang ◽  
Lin Jie Qian

For suppressing multiple access interference (MAI) in a CDMA communication system, complementary sequence sets are employed as spreading sequences in such system. In this paper, we present a method for constructing a family of quaternary periodic complementary sequence sets, which arises from the conversion of the existing binary periodic complementary sequence sets with odd period of sub-sequences. The period of sub-sequences in the proposed sequence sets is twice as long as the one of the binary sequence sets employed, which is a drawback in the proposed method. Finally, some examples are given in order to illuminate the validity of the new method.


Author(s):  
Subharthi Banerjee ◽  
Michael Hempel ◽  
Naji Albakay ◽  
Pejman Ghasemzadeh ◽  
Hamid Sharif

By 2030, the United States Federal Transit Administration (FTA) plans to have High Speed Train (HST) systems deployed that span over 12,000 miles across the US. Given the rapidly accelerating growth in consumers demand for fast on-board Internet services, there is a need for a robust and dedicated railroad wireless network architecture for their onboard and Train-to-Ground (T2G) communication systems. And while there are several potential candidates for radio access technologies (RAT), a full understanding of the benefits and drawbacks of each is still missing. We therefore have developed and studied a simulation framework that offers railroads the ability to perform an in-depth evaluation of capabilities for different RATs in terms of interoperability, throughput, handover and bit error rate for various user-driven scenarios. The framework is capable of studying and analyzing conditions such as network performance at different train velocities, base station spacing requirements, as well as analyzing US-specific geographical or track-related architectural scenarios. Our Past experiences in researching railroad wireless solutions have shown that wireless network performance varies widely in environments like tunnels, viaducts, bridges, stations, etc. The simulator offers the network designers significant flexibility in terms of defining parameters to create simulation scenarios and obtaining a detailed understanding of network performance. The work has created a novel, flexible and adaptable simulation framework for high-speed passenger train wireless network evaluation. The simulation tool supports 220MHz-100GHz systems for simulating LTE and 5G-New Radio (5G-NR), and it can support other technologies such as 220MHz PTC, in a time-variant channel. In this paper we present the architecture and the capabilities of the simulator with a sample scenario evaluation. The developed framework aims to support HST wireless communication designers to conduct more detailed analyses and to make more informed decisions in optimizing system deployments.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Guomei Gan ◽  
Yanhu Huang ◽  
Qiang Wang

Device to device (D2D) communication has recently attracted a lot of attentions since it can significantly improve the system throughput and reduce the energy consumption. Indeed, the devices can communicate with each other in a D2D system, and the base station (BS) can share the spectrum with D2D users, which can efficiently improve the spectrum and energy efficiency. Nevertheless, spectrum sharing also raises the difficulty of resource allocation owing to the serious cochannel interference. To reduce the interference, the transmit power of the D2D pairs and BS to cellular users should be further optimized. In this paper, we consider the resource allocation problem of D2D networks involving the power allocation and subcarrier assignment. The resource allocation problem is formulated as a mixed integer programming problem which is difficult to solve. To reduce the computational complexity, the original problem is decomposed as two subproblems in terms of the subcarrier assignment and power allocation. For the subcarrier assignment problem, the particle swarm optimization (PSO) is adopted to solve it since the subcarrier assignment is an integer optimization problem, and it is difficult to be tackled using the traditional optimization approach. When the subcarrier assignment is fixed, there are only the power allocation variables in the original resource allocation problem. The difference of convex functions (DC) programming is adopted to solve the power allocation problem. Simulation results demonstrate the effectiveness of the proposed resource allocation scheme of D2D networks.


Author(s):  
Bowen Gao ◽  
Decun Dong ◽  
Yusen Wu ◽  
Dongxiu Ou

The rescheduling of train timetables under a complete blockage is a challenging process, which is more difficult when timetables contain lots of trains. In this paper, a mixed integer linear programming (MILP) model is formulated to solve the problem, following the rescheduling strategy that blocked trains wait inside the stations during the disruption. When the exact end time of the disruption is known, trains at stations downstream of the blocked station can depart early. The model aims at minimizing the total delay time and the total number of delayed trains under the constraints of station capacities, activity time, overtaking rules, and rescheduling strategies. Because there are too many variables and constraints of the MILP model to be solved, a three-stage algorithm is designed to speed up the solution. Experiments are carried out on the Beijing–Guangzhou high-speed railway line from Chibibei to Guangzhounan. The original timetable contains 162 trains, including 29 cross-line trains and 133 local trains. The simulation results show that our model can handle the optimization task of the timetable rescheduling problem very well. Compared with the one-stage algorithm, the three-stage algorithm is proved to greatly improve the solving speed of the model. All instances can get a better optimized disposition timetable within 450 to 600 s, which is acceptable for practical use.


2019 ◽  
Vol 11 (10) ◽  
pp. 208
Author(s):  
Jie Yang ◽  
Ziyu Pan ◽  
Hengfei Xu ◽  
Han Hu

Heterogeneous cellular networks (HCNs) have emerged as the primary solution for explosive data traffic. However, an increase in the number of base stations (BSs) inevitably leads to an increase in energy consumption. Energy efficiency (EE) has become a focal point in HCNs. In this paper, we apply tools from stochastic geometry to investigate and optimize the energy efficiency (EE) for a two-tier HCN. The average achievable transmission rate and the total power consumption of all the BSs in a two-tier HCN is derived, and then the EE is formulated. In order to maximize EE, a one-dimensional optimization algorithm is used to optimize picocell BS density and transmit power. Based on this, an alternating optimization method aimed at maximizing EE is proposed to jointly optimize transmit power and density of picocell BSs. Simulation results validate the accuracy of the theoretical analysis and demonstrate that the proposed joint optimization method can obviously improve EE.


Sign in / Sign up

Export Citation Format

Share Document