scholarly journals SPECT imaging of distribution and retention of a brain-penetrating bispecific amyloid-β antibody in a mouse model of Alzheimer’s disease

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Gustavsson ◽  
Stina Syvänen ◽  
Paul O’Callaghan ◽  
Dag Sehlin

Abstract Background Alzheimer’s disease (AD) immunotherapy with antibodies targeting amyloid-β (Aβ) has been extensively explored in clinical trials. The aim of this study was to study the long-term brain distribution of two radiolabeled monoclonal Aβ antibody variants – RmAb158, the recombinant murine version of BAN2401, which has recently demonstrated amyloid removal and reduced cognitive decline in AD patients, and the bispecific RmAb158-scFv8D3, which has been engineered for enhanced brain uptake via transferrin receptor-mediated transcytosis. Methods A single intravenous injection of iodine-125 (125I)-labeled RmAb158-scFv8D3 or RmAb158 was administered to AD transgenic mice (tg-ArcSwe). In vivo single-photon emission computed tomography was used to investigate brain retention and intrabrain distribution of the antibodies over a period of 4 weeks. Activity in blood and brain tissue was measured ex vivo and autoradiography was performed in combination with Aβ and CD31 immunostaining to investigate the intrabrain distribution of the antibodies and their interactions with Aβ. Results Despite faster blood clearance, [125I]RmAb158-scFv8D3 displayed higher brain exposure than [125I]RmAb158 throughout the study. The brain distribution of [125I]RmAb158-scFv8D3 was more uniform and coincided with parenchymal Aβ pathology, while [125I]RmAb158 displayed a more scattered distribution pattern and accumulated in central parts of the brain at later times. Ex vivo autoradiography indicated greater vascular escape and parenchymal Aβ interactions for [125I]RmAb158-scFv8D3, whereas [125I]RmAb158 displayed retention and Aβ interactions in lateral ventricles. Conclusions The high brain uptake and uniform intrabrain distribution of RmAb158-scFv8D3 highlight the benefits of receptor-mediated transcytosis for antibody-based brain imaging. Moreover, it suggests that the alternative transport route of the bispecific antibody contributes to improved efficacy of brain-directed immunotherapy.

2020 ◽  
Author(s):  
Tasha R. Womack ◽  
Craig Vollert ◽  
Odochi Nwoko ◽  
Monika Schmitt ◽  
Sagi Montazari ◽  
...  

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder that is the most common cause of dementia in aged populations. A substantial amount of data demonstrates that chronic neuroinflammation can accelerate neurodegenerative pathologies, while epidemiological and experimental evidence suggests that the use of anti-inflammatory agents may be neuroprotective. In AD, chronic neuroinflammation results in the upregulation of cyclooxygenase and increased production of prostaglandin H2, a precursor for many vasoactive prostanoids. While it is well-established that many prostaglandins can modulate the progression of neurodegenerative disorders, the role of prostacyclin (PGI2) in the brain is poorly understood. We have conducted studies to assess the effect of elevated prostacyclin biosynthesis in a mouse model of AD. Upregulated prostacyclin expression significantly worsened multiple measures associated with amyloid disease pathologies. Mice overexpressing both amyloid and PGI2 exhibited impaired learning and memory and increased anxiety-like behavior compared with non-transgenic and PGI2 control mice. PGI2 overexpression accelerated the development of amyloid accumulation in the brain and selectively increased the production of soluble amyloid-β 42. PGI2 damaged the microvasculature through alterations in vascular length and branching; amyloid expression exacerbated these effects. Our findings demonstrate that chronic prostacyclin expression plays a novel and unexpected role that hastens the development of the AD phenotype.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pei-zhe Liang ◽  
Li Li ◽  
Ya-nan Zhang ◽  
Yan Shen ◽  
Li-li Zhang ◽  
...  

Background. Memory loss and cognitive impairment characterize the neurodegenerative disorder, Alzheimer’s disease (AD). Amyloid-β (Aβ) is the key factor that triggers the course of AD, and reducing the deposition of Aβ in the brain has been considered as a potential target for the treatment of AD. In clinical and animal studies, electroacupuncture (EA) has been shown to be an effective treatment for AD. In recent years, substantial evidence has accumulated suggesting the important role of the glymphatic system in Aβ clearance. Objective. The purpose of this study was to explore whether EA modifies the accumulation of Aβ through the glymphatic system and may thus be applied to alleviate cognitive impairments. Methods. Seven-month-old SAMP8 mice were randomized into a control group (Pc) and an electroacupuncture group (Pe). Age-matched SAMR1 mice were used as normal controls (Rc). Mice in the Pe group were stimulated on Baihui (GV20) and Yintang (GV29) for 10 min and then pricked at Shuigou (GV26) for ten times. EA treatment lasted for 8 weeks. In each week, EA would be applied once a day for the first five consecutive days and ceased at the remaining two days. After EA treatment, Morris water maze (MWM) test was used to evaluate the cognitive function; HE and Nissl staining was performed to observe the brain histomorphology; ELISA, contrast-enhanced MRI, and immunofluorescence were applied to explore the mechanisms underlying EA effects from Aβ accumulation, glymphatic system function, reactivity of astrocytes, and AQP4 polarization, respectively. Results. This EA regime could improve cognition and alleviate neuropathological damage to brain tissue. And EA treatment might reduce Aβ accumulation, enhance paravascular influx in the glymphatic system, inhibit the reactivity of astrocytes, and improve AQP4 polarity. Conclusion. EA treatment might reduce Aβ accumulation from the brain via improving clearance performance of the glymphatic system and thereby alleviating cognitive impairment.


2020 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Deregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers, crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: The plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a familial mouse model of familial AD (5xFAD). Ten weeks after transduction animal were challenged with behavior tests for memory, anxiety and locomotion. At week twelve brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male transgenic mice, modelling familial AD (5xFAD). CERTL in vivo over-expression has a mild effect on animal locomotion and decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Simone M. Crivelli ◽  
Qian Luo ◽  
Jo A.A. Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain. Methods A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno-associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety, and locomotion. At week 12, brains were investigated for sphingolipid levels by mass spectrometry, plaques, and neuroinflammation by immunohistochemistry, gene expression, and/or immunoassay. Results Here, we report that CERTL binds to APP, modifies Aβ aggregation, and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation, and modulates microglia by decreasing their pro-inflammatory phenotype. Conclusion Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2021 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo A.A. Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety and locomotion. At week twelve, brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2011 ◽  
Vol 31 (7) ◽  
pp. 1572-1577 ◽  
Author(s):  
Jurgen AHR Claassen ◽  
Rong Zhang

Cerebral autoregulation aims to stabilize blood flow to the brain during variations in perfusion pressure, thus protecting the brain against the risks of low or high systemic blood pressure. This vital mechanism is severely impaired in the transgenic mouse model of Alzheimer's disease (AD) that abundantly produces amyloid-β peptide β1-42. These observations have been extrapolated to human AD, wherein impairment of autoregulation could have important implications for the clinical management and prevention of AD. Research on cerebral autoregulation in human AD, however, has only recently become available. Contrary to the animal models, preliminary studies suggest that cerebral autoregulation is preserved in patients with AD. Further research is urgently needed to elucidate this discrepancy in the current literature, given the accumulating evidence that implicates cerebrovascular pathology in AD.


PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10549 ◽  
Author(s):  
Jessica F. Jordão ◽  
Carlos A. Ayala-Grosso ◽  
Kelly Markham ◽  
Yuexi Huang ◽  
Rajiv Chopra ◽  
...  

2012 ◽  
Vol 159 (2) ◽  
pp. 302-308 ◽  
Author(s):  
Daniel McLean ◽  
Michael J. Cooke ◽  
Yuanfei Wang ◽  
Paul Fraser ◽  
Peter St George-Hyslop ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Junhua Xie ◽  
Nina Gorlé ◽  
Charysse Vandendriessche ◽  
Griet Van Imschoot ◽  
Elien Van Wonterghem ◽  
...  

AbstractAlzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the accumulation of amyloid β (Aβ) and neurofibrillary tangles. The last decade, it became increasingly clear that neuroinflammation plays a key role in both the initiation and progression of AD. Moreover, also the presence of peripheral inflammation has been extensively documented. However, it is still ambiguous whether this observed inflammation is cause or consequence of AD pathogenesis. Recently, this has been studied using amyloid precursor protein (APP) overexpression mouse models of AD. However, the findings might be confounded by APP-overexpression artifacts. Here, we investigated the effect of low-grade peripheral inflammation in the APP knock-in (AppNL-G-F) mouse model. This revealed that low-grade peripheral inflammation affects (1) microglia characteristics, (2) blood-cerebrospinal fluid barrier integrity, (3) peripheral immune cell infiltration and (4) Aβ deposition in the brain. Next, we identified mechanisms that might cause this effect on AD pathology, more precisely Aβ efflux, persistent microglial activation and insufficient Aβ clearance, neuronal dysfunction and promotion of Aβ aggregation. Our results further strengthen the believe that even low-grade peripheral inflammation has detrimental effects on AD progression and may further reinforce the idea to modulate peripheral inflammation as a therapeutic strategy for AD.


2020 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers, crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: The plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a familial mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety and locomotion. At week twelve, brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document