chronic neuroinflammation
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 71)

H-INDEX

34
(FIVE YEARS 5)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 136
Author(s):  
Noora Puhakka ◽  
Shalini Das Das Gupta ◽  
Niina Vuokila ◽  
Asla Pitkänen

Neuroinflammation is a secondary injury mechanism that evolves in the brain for months after traumatic brain injury (TBI). We hypothesized that an altered small non-coding RNA (sncRNA) signature plays a key role in modulating post-TBI secondary injury and neuroinflammation. At 3threemonths post-TBI, messenger RNA sequencing (seq) and small RNAseq were performed on samples from the ipsilateral thalamus and perilesional cortex of selected rats with a chronic inflammatory endophenotype, and sham-operated controls. The small RNAseq identified dysregulation of 2 and 19 miRNAs in the thalamus and cortex, respectively. The two candidates from the thalamus and the top ten from the cortex were selected for validation. In the thalamus, miR-146a-5p and miR-155-5p levels were upregulated, and in the cortex, miR-375-3p and miR-211-5p levels were upregulated. Analysis of isomiRs of differentially expressed miRNAs identified 3′nucleotide additions that were increased after TBI. Surprisingly, we found fragments originating from 16 and 13 tRNAs in the thalamus and cortex, respectively. We further analyzed two upregulated fragments, 3′tRF-IleAAT and 3′tRF-LysTTT. Increased expression of the full miR-146a profile, and 3′tRF-IleAAT and 3′tRF-LysTTT was associated with a worse behavioral outcome in animals with chronic neuroinflammation. Our results highlight the importance of understanding the regulatory roles of as-yet unknown sncRNAs for developing better strategies to treat TBI and neuroinflammation.


2021 ◽  
Vol 22 (24) ◽  
pp. 13647
Author(s):  
Akash Shah ◽  
Uday Kishore ◽  
Abhishek Shastri

Alzheimer’s disease is a type of dementia characterized by problems with short-term memory, cognition, and difficulties with activities of daily living. It is a progressive, neurodegenerative disorder. The complement system is an ancient part of the innate immune system and comprises of more than thirty serum and membrane-bound proteins. This system has three different activating pathways and culminates into the formation of a membrane attack complex that ultimately causes target cell lysis (usually pathogens) The complement system is involved in several important functions in the central nervous system (CNS) that include neurogenesis, synaptic pruning, apoptosis, and neuronal plasticity. Here, we discuss how the complement system is involved in the effective functioning of CNS, while also contributing to chronic neuroinflammation leading to neurodegenerative disorders such as Alzheimer’s disease. We also discuss potential targets in the complement system for stopping its harmful effects via neuroinflammation and provide perspective for the direction of future research in this field.


2021 ◽  
Vol 17 (S6) ◽  
Author(s):  
Ingrid Marguerite Wagnon ◽  
Garry Niedermayer ◽  
Rose Chesworth ◽  
Gerald Wolfgang Muench ◽  
Tim Karl ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Erskine Chu ◽  
Richelle Mychasiuk ◽  
Margaret L. Hibbs ◽  
Bridgette D. Semple

AbstractMicroglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.


2021 ◽  
Author(s):  
Niklas Lonnemann ◽  
Shirin Hosseini ◽  
Melanie Ohm ◽  
Karsten Hiller ◽  
Charles A. Dinarello ◽  
...  

The anti-inflammatory cytokine interleukin-37 (IL-37) is a member of the IL-1 family but not expressed in mice. We used a human IL 37 (hIL-37tg) expressing mouse, which has been subjected to various models of local and systemic inflammation as well as immunological challenges. Those studies demonstrate an immune-modulatory role of IL-37 which can be characterized as an important suppressor of innate immunity. We investigated the functions of IL-37 in the CNS and explored the effects of IL-37 on neuronal architecture and function, microglia phenotype, cytokine production and behavior after inflammatory challenge by intraperitoneal LPS-injection. Reduced spine density, activated microglia phenotype and impaired long-term potentiation (LTP) were observed in wild-type mice after LPS injection, whereas hIL-37tg mice showed no impairment. In addition, we crossed the hIL-37tg mouse with an animal model of Alzheimer's disease (APP/PS1) to investigate the anti-inflammatory properties of IL-37 under chronic neuroinflammatory conditions. Our results show that IL-37 is able to limit inflammation in the brain after acute inflammatory events and prevent the loss of cognitive abilities in a mouse model of AD.


2021 ◽  
Author(s):  
Khanh Van Do ◽  
Erik Hjorth ◽  
Ying Wang ◽  
Bokkyoo Jun ◽  
Marie-Audrey I. Kautzmann ◽  
...  

Abstract Background: Alzheimer's disease (AD) develops into dementia over a period of several years, during which subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) are used as intermediary diagnoses of increasing severity. Chronic neuroinflammation resulting from insufficient resolution is involved in the pathogenesis of AD and is associated with cognitive impairment. Specialized pro-resolving lipid mediators (LMs) that promote the resolution of inflammation may be valuable markers in AD diagnosis and as therapeutic targets.Methods: Liquid chromatography-tandem mass spectrometry was used to analyze pro-resolving and pro-inflammatory LMs in cerebrospinal fluid (CSF) from patients with cognitive impairment ranging from subjective impairment to a diagnosis of AD, and correlated to cognition, CSF tau and β-amyloid (Aβ), and an inflammation biomarker (YKL-40). Results: RvD4, neuroprotectin D1, MaR1, and RvE4 were lower in AD and/or MCI compared to SCI. The pro-inflammatory LTB4 and 15-HETE were higher in AD and MCI, respectively, while PGD2 and PGE2 were decreased in AD, compared to SCI. RvD4 was also negatively correlated to AD tangle biomarkers. Many differences were dependent on gender.Conclusion: In this exploratory study of the lipidome in CSF of AD, MCI and SCI, the results indicate a gender-dependent shift in the LM profile from pro-resolving to pro-inflammatory in progression to AD, suggesting that it may be of use as a biomarker when followed by confirmation by replication studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunna Li ◽  
Yun Xia ◽  
Sijia Yin ◽  
Fang Wan ◽  
Junjie Hu ◽  
...  

According to emerging studies, the excessive activation of microglia and the subsequent release of pro-inflammatory cytokines play important roles in the pathogenesis and progression of Parkinson’s disease (PD). However, the exact mechanisms governing chronic neuroinflammation remain elusive. Findings demonstrate an elevated level of NLRP3 inflammasome in activated microglia in the substantia nigra of PD patients. Activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Abnormal protein aggregation of α-synuclein (α-syn), a pathologically relevant protein of PD, were reported to activate the NLRP3 inflammasome of microglia through interaction with toll-like receptors (TLRs). This eventually releases pro-inflammatory cytokines through the translocation of nuclear factor kappa-B (NF-κB) and causes an impairment of mitochondria, thus damaging the dopaminergic neurons. Currently, therapeutic drugs for PD are primarily aimed at providing relief from its clinical symptoms, and there are no well-established strategies to halt or reverse this disease. In this review, we aimed to update existing knowledge on the role of the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis and microglial activation in PD. In addition, this review summarizes recent progress on the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis of microglia as a potential target for PD treatment by inhibiting microglial activation.


EMBO Reports ◽  
2021 ◽  
Author(s):  
Javier Rueda‐Carrasco ◽  
María Jesús Martin‐Bermejo ◽  
Guadalupe Pereyra ◽  
María Inés Mateo ◽  
Aldo Borroto ◽  
...  

2021 ◽  
Author(s):  
Yi-Jun Wang ◽  
Matthew A. Downey ◽  
Sungwoon Choi ◽  
Timothy M. Shoup ◽  
David R. Elmaleh

Abstract Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and its fluorinated analogue F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce secretion of pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Neurite outgrowth in PC12 neuronal cells is augmented by cromolyn and F-cromolyn in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aβ42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3β signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.


Sign in / Sign up

Export Citation Format

Share Document