scholarly journals Fine-scale behaviour of the Lusitanian toadfish assessed in situ with the AccelTag

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tadeu J. Pereira ◽  
Pedro R. Almeida ◽  
Bernardo R. Quintella ◽  
Aage Gronningsaeter ◽  
Maria J. Costa ◽  
...  

Abstract Background Three-axis acceleration sensor acoustic transmitters (AccelTag) programmed to identify specific acceleration patterns associated with particular behaviours (e.g., burrowing, attack) were used to study some aspects of the ecology of the Lusitanian toadfish Halobatrachus didactylus (Bloch & Schneider 1801). The AccelTag combines the features of archival tags (records acceleration in all three directions measuring also roll-independent pitch/tilt angle and roll around the fish’s axis) and acoustic transmitters. Therefore, this tag can autonomously identify and record specific signatures (i.e., behaviour patterns) of different movements transmitting autonomously and periodically the data to an acoustic biotelemetry receiver. Lusitanian toadfish is a subtropical marine teleost confined to estuaries in its northern limit of distribution due to thermal constraints. During 2010 (August and October), 24 toadfish were captured, tagged with the AccelTag and released in the Mira estuary, SW coast of Portugal, where an array of underwater automatic acoustic biotelemetry receivers was deployed. Results Around 40% of AccelTag transmissions from tagged fish that stayed in the study area were logged by the acoustic receiver array. The Lusitanian toadfish exhibited low activity during late summer and early autumn (< 3% of time active). The tidal stage and time of day were important factors that influenced the species behaviour and activity. Increased burrowing and re-burrowing movements were registered during spring tides, while attacks prevailed on neap tides and during the night. The tidal cycle only influenced toadfish behaviour and activity in interaction with time of day, with more attacks and higher levels of activity during nocturnal high tides. Conclusions Higher activity levels and attacks displayed by the Lusitanian toadfish during the night, at high tide periods and during Spring tides are considered to be associated with increased activity and vulnerability of its prey during these periods. The AccelTag proved to be a powerful tool to assess and monitor the activity and fine-scale behaviour of fish in situ. This technology is particularly suited for fish species with biological and ecological features similar to Lusitanian toadfish, i.e., resident species with low activity levels and behaviours with a distinct 3D acceleration signature.

2019 ◽  
Vol 76 (8) ◽  
pp. 1432-1445 ◽  
Author(s):  
Breanna M. Watson ◽  
Carlo A. Biagi ◽  
Sara L. Northrup ◽  
Michael L.A. Ohata ◽  
Colin Charles ◽  
...  

The fine-scale behavioural activities of rainbow trout (Oncorhynchus mykiss) in nature are not well understood, but are of importance for identifying interactions with the ecosystem and of interest to conservationists and recreational anglers. We have undertaken a high-resolution acoustic telemetry study to identify the distinct movement patterns of 30 rainbow trout in a freshwater lake, specifically examining swim speed, area of movement, and site preference in both summer and winter. Activity levels were reduced in winter compared with summer across all fish, but ranking of individuals was consistent. In summer, 16/30 fish displayed diel movement, in which they travelled to a different area of the lake at dawn and returned at dusk, while other fish maintained their site preference regardless of the time of day or swam more randomly throughout the lake. These patterns were minimized in winter, where there was a reduction in cross-lake movement under ice and only 4/30 fish displayed diel movement. Winter conditions may limit the capability (physiological limitations) and (or) motivation (prey availability) for diel behaviours observed in summer.


2020 ◽  
Vol 13 (1) ◽  
pp. 40
Author(s):  
Semonn Oleksyn ◽  
Louise Tosetto ◽  
Vincent Raoult ◽  
Jane E. Williamson

Coastal ecosystems are under threat from a range of anthropogenic impacts that disrupt habitat connectivity and the ability for animals to move within them. Understanding fine-scale animal movement provides insight into how animals are responding to these pressures, and underpins effective ecological management and conservation strategies. This study used drones to investigate the drivers of the fine-scale movement of rays in coastal estuaries using the short-tail stingray (Bathytoshia brevicaudata) as a model species. Smaller rays swam with more regular bursts of speed and greater sinuosity than larger individuals, indicating that rays of different sizes alter their fine-scale movement behavior to maintain energetic efficiency. Rays were less likely to spend time resting and swam faster on the high tide compared to the outgoing tide. They were also more likely to exhibit bursts of speed at noon (11 am to 1 pm) than at other times of day. Body size, tide and time of day all influenced ray movement. Understanding the ecological variables that influence the fine-scale movement of rays and the potential for human activities to alter natural behaviors is integral to the implementation of effective management strategies for this group of animals and their ecosystems.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 60-61
Author(s):  
Elizabeth M Morris ◽  
Susanna E Kitts-Morgan ◽  
Dawn M Spangler ◽  
Kyle R McLeod ◽  
David L Harmon

Abstract Growing public interest in and use of Cannabidiol (CBD) in companion animals has amplified the need to elucidate potential impacts. The purpose of this investigation was to determine the impact of CBD on daily activity of adult dogs. Twenty-four dogs (18.0 ± 3.4 kg) were utilized in a randomized complete block design with treatments consisting of control, 2 mg CBD/kg BW/d, and 4 mg CBD/kg BW/d split between two treats administered after twice-daily exercise (7:00-9:00 and 17:00-19:00). Four hours each day (10:00-12:00, AM and 13:30-15:30, PM), were designated as time when no persons entered the kennels, with 2 h designated as Quiet Time and the other 2 h as Music Time, where calming music played over speakers. Quiet and Music sessions were randomly allotted to daily AM or PM times. Activity monitors were fitted to dogs’ collars for continuous collection of activity parameters. Data were collected over a 2-wk baseline period to block dogs by activity level (high or low) before randomly assigning dogs within each block to treatments. After 1 wk of treatment adaptation, activity parameters were collected for 2 wk. Data were tested for normality using the UNIVARIATE procedure in SAS before examining differences using the MIXED procedure in SAS, including effects of treatment, day, session (Quiet or Music), time of day (AM or PM), and accompanying interactions. CBD did not alter total activity points (P = 0.9971) or activity duration (P = 0.8776). CBD tended (P = 0.0692) to reduce scratching compared to control. Irrespective of treatment, dogs were more active in PM than AM (P &lt; 0.0001). Regardless of session, dogs receiving 4 mg/kg/d tended (P = 0.0914) to be less active in the PM than control. CBD did not affect activity duration during exercise periods (P = 0.1425), but dogs receiving CBD ran more than control (P = 0.0339). These results indicate that when supplemented up to 4 mg/kg/d, CBD does not negatively impact daily activity levels of dogs.


2012 ◽  
Vol 9 (5) ◽  
pp. 2885-2914 ◽  
Author(s):  
A. Soloviev ◽  
C. Maingot ◽  
S. Matt ◽  
R. E. Dodge ◽  
S. Lehner ◽  
...  

Abstract. This work is aimed at identifying the origin of fine-scale features on the sea surface in synthetic aperture radar (SAR) imagery with the help of in-situ measurements as well as numerical models (presented in a companion paper). We are interested in natural and artificial features starting from the horizontal scale of the upper ocean mixed layer, around 30–50 m. These features are often associated with three-dimensional upper ocean dynamics. We have conducted a number of studies involving in-situ observations in the Straits of Florida during SAR satellite overpass. The data include examples of sharp frontal interfaces, wakes of surface ships, internal wave signatures, as well as slicks of artificial and natural origin. Atmospheric processes, such as squall lines and rain cells, produced prominent signatures on the sea surface. This data has allowed us to test an approach for distinguishing between natural and artificial features and atmospheric influences in SAR images that is based on a co-polarized phase difference filter.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Montserrat Roca-Martí ◽  
Claudia R. Benitez-Nelson ◽  
Blaire P. Umhau ◽  
Abigale M. Wyatt ◽  
Samantha J. Clevenger ◽  
...  

Fluxes of major bioelements associated with sinking particles were quantified in late summer 2018 as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign near Ocean Station Papa in the subarctic northeast Pacific. The thorium-234 method was used in conjunction with size-fractionated (1–5, 5–51, and &gt;51 μm) concentrations of particulate nitrogen (PN), total particulate phosphorus (TPP), biogenic silica (bSi), and particulate inorganic carbon (PIC) collected using large volume filtration via in situ pumps. We build upon recent work quantifying POC fluxes during EXPORTS. Similar remineralization length scales were observed for both POC and PN across all particle size classes from depths of 50–500 m. Unlike bSi and PIC, the soft tissue–associated POC, PN, and TPP fluxes strongly attenuated from 50 m to the base of the euphotic zone (approximately 120 m). Cruise-average thorium-234-derived fluxes (mmol m–2 d–1) at 120 m were 1.7 ± 0.6 for POC, 0.22 ± 0.07 for PN, 0.019 ± 0.007 for TPP, 0.69 ± 0.26 for bSi, and 0.055 ± 0.022 for PIC. These bioelement fluxes were similar to previous observations at this site, with the exception of PIC, which was 1 to 2 orders of magnitude lower. Transfer efficiencies within the upper twilight zone (flux 220 m/flux 120 m) were highest for PIC (84%) and bSi (79%), followed by POC (61%), PN (58%), and TPP (49%). These differences indicate preferential remineralization of TPP relative to POC or PN and larger losses of soft tissue relative to biominerals in sinking particles below the euphotic zone. Comprehensive characterization of the particulate bioelement fluxes obtained here will support future efforts linking phytoplankton community composition and food-web dynamics to the composition, magnitude, and attenuation of material that sinks to deeper waters.


2019 ◽  
Author(s):  
Clara Fannjiang ◽  
T. Aran Mooney ◽  
Seth Cones ◽  
David Mann ◽  
K. Alex Shorter ◽  
...  

AbstractZooplankton occupy critical roles in marine ecosystems, yet their fine-scale behavior remains poorly understood due to the difficulty of studying individualsin situ. Here we combine biologging with supervised machine learning (ML) to demonstrate a pipeline for studyingin situbehavior of larger zooplankton such as jellyfish. We deployed the ITAG, a biologging package with high-resolution motion sensors designed for soft-bodied invertebrates, on 8Chrysaora fuscescensin Monterey Bay, using the tether method for retrieval. Using simultaneous video footage of the tagged jellyfish, we develop ML methods to 1) identify periods of tag data corrupted by the tether method, which may have compromised prior research findings, and 2) classify jellyfish behaviors. Our tools yield characterizations of fine-scale jellyfish activity and orientation over long durations, and provide evidence that developing behavioral classifiers onin siturather than laboratory data is essential.Summary StatementHigh-resolution motion sensors paired with supervised machine learning can be used to infer fine-scalein situbehavior of zooplankton for long durations.


1998 ◽  
Vol 76 (4) ◽  
pp. 668-672 ◽  
Author(s):  
Maria A Eifler ◽  
Norman A Slade

We examined mass-specific activity patterns among overwintering cotton rats (Sigmodon hispidus) in northeastern Kansas. We livetrapped animals for a 24-h period, checking traps every 2 h. Trapping occurred every 2 weeks for 5 months. We estimated probability of capture for each mass class, time class, and date, then tested for differences in probability of capture (i.e., activity levels) using a General Linear Model with temperature as a covariate. Large cotton rats were significantly less active than small and intermediate-sized cotton rats. Activity of small cotton rats increased with decreasing temperature, whereas larger cotton rats were less responsive to temperature. Finally, activity levels of large and small cotton rats did not vary significantly with time of day, but intermediate-sized cotton rats were significantly less likely to be captured during the night than at dusk.


Sign in / Sign up

Export Citation Format

Share Document