scholarly journals Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mahdi Hashemi

AbstractThe input to a machine learning model is a one-dimensional feature vector. However, in recent learning models, such as convolutional and recurrent neural networks, two- and three-dimensional feature tensors can also be inputted to the model. During training, the machine adjusts its internal parameters to project each feature tensor close to its target. After training, the machine can be used to predict the target for previously unseen feature tensors. What this study focuses on is the requirement that feature tensors must be of the same size. In other words, the same number of features must be present for each sample. This creates a barrier in processing images and texts, as they usually have different sizes, and thus different numbers of features. In classifying an image using a convolutional neural network (CNN), the input is a three-dimensional tensor, where the value of each pixel in each channel is one feature. The three-dimensional feature tensor must be the same size for all images. However, images are not usually of the same size and so are not their corresponding feature tensors. Resizing images to the same size without deforming patterns contained therein is a major challenge. This study proposes zero-padding for resizing images to the same size and compares it with the conventional approach of scaling images up (zooming in) using interpolation. Our study showed that zero-padding had no effect on the classification accuracy but considerably reduced the training time. The reason is that neighboring zero input units (pixels) will not activate their corresponding convolutional unit in the next layer. Therefore, the synaptic weights on outgoing links from input units do not need to be updated if they contain a zero value. Theoretical justification along with experimental endorsements are provided in this paper.

10.29007/5k4z ◽  
2019 ◽  
Author(s):  
Fang Chun ◽  
Yoshitaka Moriwaki ◽  
Caihong Li ◽  
Kentaro Shimizu

MoRFs usually play as "hub" site in interaction networks of intrinsically disordered proteins. With more and more serious diseases being found to be associated with disordered proteins, identifying MoRFs has become increasingly important. In this study, we introduce a multichannel convolutional neural network (CNN) model for MoRFs prediction. This model is generated by expanding the standard one-dimensional CNN model using multiple parallel CNNs that read the sequence with different n-gram sizes (groups of residues). In addition, we add an averaging step to refine the output result of machine learning model. When compared with other methods on the same dataset, our approach achieved a balanced accuracy of 0.682 and an AUC of 0.723, which is the best performance among the single model-based approaches.


2021 ◽  
pp. 147592172198940
Author(s):  
Hyung Jin Lim ◽  
Soonkyu Hwang ◽  
Hyeonjin Kim ◽  
Hoon Sohn

In this study, a faster region-based convolutional neural network is constructed and applied to the combined vision and thermographic images for automated detection and classification of surface and subsurface corrosion in steel bridges. First, a hybrid imaging system is developed for the seamless integration of vision and infrared images. Herein, a three-dimensional red/green/blue vision image is obtained with a vision camera, and a one-dimensional active infrared (IR) amplitude image is obtained from the infrared camera for temperature measurements with halogen lamps as the heat source. Subsequently, the three-dimensional red/green/blue vision image is converted to a two-dimensional chroma blue- and red-difference (CbCr) image because the CbCr image is known to be more sensitive to surface corrosion than the red/green/blue image. A combined three-dimensional (CbCr-IR) image is then constructed by fusing the two-dimensional CbCr image and the one-dimensional infrared image. For the automated corrosion detection and classification, a faster region-based convolutional neural network is constructed and trained using the combined three-dimensional CbCr-IR images of surface and subsurface corrosion on steel bridge structures. Finally, the performance of the trained, faster region-based convolutional neural network is evaluated using the images acquired from real bridges and compared with faster region-based convolutional neural networks trained by other vision and IR-based images. The uniqueness of this study is attributed to the (1) corrosion detection reliability improvements based on the fusion of vision and infrared images, (2) automated corrosion detection and classification with a faster region-based convolutional neural network, (3) detection of subsurface corrosion that is not detectable using vision images only, and (4) application to field bridge inspection.


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 262
Author(s):  
Chih-Yung Huang ◽  
Zaky Dzulfikri

Stamping is one of the most widely used processes in the sheet metalworking industry. Because of the increasing demand for a faster process, ensuring that the stamping process is conducted without compromising quality is crucial. The tool used in the stamping process is crucial to the efficiency of the process; therefore, effective monitoring of the tool health condition is essential for detecting stamping defects. In this study, vibration measurement was used to monitor the stamping process and tool health. A system was developed for capturing signals in the stamping process, and each stamping cycle was selected through template matching. A one-dimensional (1D) convolutional neural network (CNN) was developed to classify the tool wear condition. The results revealed that the 1D CNN architecture a yielded a high accuracy (>99%) and fast adaptability among different models.


Sign in / Sign up

Export Citation Format

Share Document