scholarly journals Modelling customers credit card behaviour using bidirectional LSTM neural networks

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Maher Ala’raj ◽  
Maysam F. Abbod ◽  
Munir Majdalawieh

AbstractWith the rapid growth of consumer credit and the huge amount of financial data developing effective credit scoring models is very crucial. Researchers have developed complex credit scoring models using statistical and artificial intelligence (AI) techniques to help banks and financial institutions to support their financial decisions. Neural networks are considered as a mostly wide used technique in finance and business applications. Thus, the main aim of this paper is to help bank management in scoring credit card clients using machine learning by modelling and predicting the consumer behaviour with respect to two aspects: the probability of single and consecutive missed payments for credit card customers. The proposed model is based on the bidirectional Long-Short Term Memory (LSTM) model to give the probability of a missed payment during the next month for each customer. The model was trained on a real credit card dataset and the customer behavioural scores are analysed using classical measures such as accuracy, Area Under the Curve, Brier score, Kolmogorov–Smirnov test, and H-measure. Calibration analysis of the LSTM model scores showed that they can be considered as probabilities of missed payments. The LSTM model was compared to four traditional machine learning algorithms: support vector machine, random forest, multi-layer perceptron neural network, and logistic regression. Experimental results show that, compared with traditional methods, the consumer credit scoring method based on the LSTM neural network has significantly improved consumer credit scoring.

Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6491
Author(s):  
Le Zhang ◽  
Jeyan Thiyagalingam ◽  
Anke Xue ◽  
Shuwen Xu

Classification of clutter, especially in the context of shore based radars, plays a crucial role in several applications. However, the task of distinguishing and classifying the sea clutter from land clutter has been historically performed using clutter models and/or coastal maps. In this paper, we propose two machine learning, particularly neural network, based approaches for sea-land clutter separation, namely the regularized randomized neural network (RRNN) and the kernel ridge regression neural network (KRR). We use a number of features, such as energy variation, discrete signal amplitude change frequency, autocorrelation performance, and other statistical characteristics of the respective clutter distributions, to improve the performance of the classification. Our evaluation based on a unique mixed dataset, which is comprised of partially synthetic clutter data for land and real clutter data from sea, offers improved classification accuracy. More specifically, the RRNN and KRR methods offer 98.50% and 98.75% accuracy, outperforming the conventional support vector machine and extreme learning based solutions.


2019 ◽  
Vol 8 (4) ◽  
pp. 160 ◽  
Author(s):  
Bingxin Liu ◽  
Ying Li ◽  
Guannan Li ◽  
Anling Liu

Spectral characteristics play an important role in the classification of oil film, but the presence of too many bands can lead to information redundancy and reduced classification accuracy. In this study, a classification model that combines spectral indices-based band selection (SIs) and one-dimensional convolutional neural networks was proposed to realize automatic oil films classification using hyperspectral remote sensing images. Additionally, for comparison, the minimum Redundancy Maximum Relevance (mRMR) was tested for reducing the number of bands. The support vector machine (SVM), random forest (RF), and Hu’s convolutional neural networks (CNN) were trained and tested. The results show that the accuracy of classifications through the one dimensional convolutional neural network (1D CNN) models surpassed the accuracy of other machine learning algorithms such as SVM and RF. The model of SIs+1D CNN could produce a relatively higher accuracy oil film distribution map within less time than other models.


2018 ◽  
Vol 8 (8) ◽  
pp. 1280 ◽  
Author(s):  
Yong Kim ◽  
Youngdoo Son ◽  
Wonjoon Kim ◽  
Byungki Jin ◽  
Myung Yun

Sitting on a chair in an awkward posture or sitting for a long period of time is a risk factor for musculoskeletal disorders. A postural habit that has been formed cannot be changed easily. It is important to form a proper postural habit from childhood as the lumbar disease during childhood caused by their improper posture is most likely to recur. Thus, there is a need for a monitoring system that classifies children’s sitting postures. The purpose of this paper is to develop a system for classifying sitting postures for children using machine learning algorithms. The convolutional neural network (CNN) algorithm was used in addition to the conventional algorithms: Naïve Bayes classifier (NB), decision tree (DT), neural network (NN), multinomial logistic regression (MLR), and support vector machine (SVM). To collect data for classifying sitting postures, a sensing cushion was developed by mounting a pressure sensor mat (8 × 8) inside children’s chair seat cushion. Ten children participated, and sensor data was collected by taking a static posture for the five prescribed postures. The accuracy of CNN was found to be the highest as compared with those of the other algorithms. It is expected that the comprehensive posture monitoring system would be established through future research on enhancing the classification algorithm and providing an effective feedback system.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 591-606
Author(s):  
R. Brindha ◽  
Dr.M. Thillaikarasi

Big data analytics (BDA) is a system based method with an aim to recognize and examine different designs, patterns and trends under the big dataset. In this paper, BDA is used to visualize and trends the prediction where exploratory data analysis examines the crime data. “A successive facts and patterns have been taken in following cities of California, Washington and Florida by using statistical analysis and visualization”. The predictive result gives the performance using Keras Prophet Model, LSTM and neural network models followed by prophet model which are the existing methods used to find the crime data under BDA technique. But the crime actions increases day by day which is greater task for the people to overcome the challenging crime activities. Some ignored the essential rate of influential aspects. To overcome these challenging problems of big data, many studies have been developed with limited one or two features. “This paper introduces a big data introduces to analyze the influential aspects about the crime incidents, and examine it on New York City. The proposed structure relates the dynamic machine learning algorithms and geographical information system (GIS) to consider the contiguous reasons of crime data. Recursive feature elimination (RFE) is used to select the optimum characteristic data. Exploitation of gradient boost decision tree (GBDT), logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) are related to develop the optimum data model. Significant impact features were then reviewed by applying GBDT and GIS”. The experimental results illustrates that GBDT along with GIS model combination can identify the crime ranking with high performance and accuracy compared to existing method.”


2022 ◽  
Vol 2161 (1) ◽  
pp. 012072
Author(s):  
Konduri Praveen Mahesh ◽  
Shaik Ashar Afrouz ◽  
Anu Shaju Areeckal

Abstract Every year there is an increasing loss of a huge amount of money due to fraudulent credit card transactions. Recently there is a focus on using machine learning algorithms to identify fraud transactions. The number of fraud cases to non-fraud transactions is very low. This creates a skewed or unbalanced data, which poses a challenge to training the machine learning models. The availability of a public dataset for this research problem is scarce. The dataset used for this work is obtained from Kaggle. In this paper, we explore different sampling techniques such as under-sampling, Synthetic Minority Oversampling Technique (SMOTE) and SMOTE-Tomek, to work on the unbalanced data. Classification models, such as k-Nearest Neighbour (KNN), logistic regression, random forest and Support Vector Machine (SVM), are trained on the sampled data to detect fraudulent credit card transactions. The performance of the various machine learning approaches are evaluated for its precision, recall and F1-score. The classification results obtained is promising and can be used for credit card fraud detection.


2021 ◽  
Author(s):  
Igor Miranda ◽  
Gildeberto Cardoso ◽  
Madhurananda Pahar ◽  
Gabriel Oliveira ◽  
Thomas Niesler

Predicting the need for hospitalization due to COVID-19 may help patients to seek timely treatment and assist health professionals to monitor cases and allocate resources. We investigate the use of machine learning algorithms to predict the risk of hospitalization due to COVID-19 using the patient's medical history and self-reported symptoms, regardless of the period in which they occurred. Three datasets containing information regarding 217,580 patients from three different states in Brazil have been used. Decision trees, neural networks, and support vector machines were evaluated, achieving accuracies between 79.1% to 84.7%. Our analysis shows that better performance is achieved in Brazilian states ranked more highly in terms of the official human development index (HDI), suggesting that health facilities with better infrastructure generate data that is less noisy. One of the models developed in this study has been incorporated into a mobile app that is available for public use.


Author(s):  
T. Jhansi Rani ◽  
T. Jaya Vumesh ◽  
P. Saiteja ◽  
V. Ajay Kumar Reddy ◽  
M. Meghana

In our current generation we are very much habituated to many mobile services like communication, ecommerce etc. In mobile communication services SMS’s (Short Message Service’s) are very common and important services which we are using in personal purposes and profession. In these services some messages may cause spam attacks which is trap to users to access their personal information or attracting them to purchase a product from unauthorized websites. It is very easy for companies send any information or service or alert to their customers/users with these SMS API’s. Based on these services it is also possible for sending spam messages. So in this system we are using advance Machine Learning concepts for detection of the spam filtering in the SMS’s. In this system we are importing the dataset from UCI repository and for spam SMS detection we implementing machine learning classifiers like Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Neural Networks (NN) algorithms and with their metrics like accuracy, precision, recall and f-score. We calculate performances between there algorithms as well as we show the experiment results with visualization techniques and analyses which algorithm is best for spam SMS detection.


Sign in / Sign up

Export Citation Format

Share Document