scholarly journals Realization approach of non-linear postseismic deformation model for Taiwan semi-kinematic reference frame

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Kwo-Hwa Chen ◽  
Ray Y. Chuang ◽  
Kuo-En Ching
Author(s):  
Mikhail Sainov

Introduction. The main factor determining the stress-strain state (SSS) of rockfill dam with reinforced concrete faces is deformability of the dam body material, mostly rockfill. However, the deformation properties of rockfill have not been sufficiently studied yet for the time being due to technical complexity of the matter, Materials and methods. To determine the deformation parameters of rockfill, scientific and technical information on the results of rockfill laboratory tests in stabilometers were collected and analyzed, as well as field data on deformations in the existing rockfill dams. After that, the values of rockfill linear deformation modulus obtained in the laboratory and in the field were compared. The laboratory test results were processed and analyzed to determine the parameters of the non-linear rockfill deformation model. Results. Analyses of the field observation data demonstrates that the deformation of the rockfill in the existing dams varies in a wide range: its linear deformation modulus may vary from 30 to 500 МPа. It was found out that the results of the most rockfill tests conducted in the laboratory, as a rule, approximately correspond to the lower limit of the rockfill deformation modulus variation range in the bodies of the existing dams. This can be explained by the discrepancy in density and particle sizes of model and natural soils. Only recently, results of rockfill experimental tests were obtained which were comparable with the results of the field measurements. They demonstrate that depending on the stress state the rockfill linear deformation modulus may reach 700 МPа. The processing of the results of those experiments made it possible to determine the parameters on the non-linear model describing the deformation of rockfill in the dam body. Conclusions. The obtained data allows for enhancement of the validity of rockfill dams SSS analyses, as well as for studying of the impact of the non-linear character of the rockfill deformation on the SSS of reinforced concrete faces of rockfill dams.


2020 ◽  
Author(s):  
Mick Filmer ◽  
Paul Johnston ◽  
Thomas Fuhrmann ◽  
Matt Garthwaite ◽  
Alex Woods

<p>Deformation of the Earth’s surface affects the maintenance of geodetic infrastructure and its reference frame to support e.g., construction, mineral exploration, telecommunications, and environmental monitoring. As the land deforms, the 3D coordinates of each position will change within the reference frame. Monitoring these changes is particularly challenging for local deformation occurring between GNSS continuously operating reference stations (CORS), as it is not directly measured. Hence, a deformation model to correct for this deformation is required, using radar interferometry (InSAR) to measure localised deformation occurring between the sparse GNSS CORS. The Australian Intergovernmental Committee for Surveying and Mapping’s (ICSM’s) Permanent Committee on Geodesy has recently identified the need for such a deformation model, leading to a project to develop a prototype deformation model combining radar interferometry with other geodetic measurements.</p><p>We present the first stage of this project where these data are analysed in the Latrobe Valley study area (south east Australia), where we have used 2.7 years (2015-2018) of Sentinel-1 and ~4 years (19 scenes; 2007-2011) of ALOS PALSAR SAR data to provide estimates of line of sight (LOS) velocity and uncertainties. Time series from five local GNSS CORS have been reprocessed in a consistent reference frame (ITRF2014) giving 3D velocities and uncertainties to which the InSAR time series are referenced. The InSAR rates are converted from LOS to vertical within the ITRF2014 reference frame so that the results are comparable to other geodetic measurements. Repeat levelling measurements from 1980 and 2015 and periodic (non-continuous) GNSS measurements were included for 2015.9 - 2018.5, which provided complementary information to constrain the rates in the study area in both time and space. We test methods to combine these data that relate to different time periods, spatial location, temporal and spatial frequency. We find that all of the data contribute to our understanding of deformation in the Latrobe Valley:  GNSS data shows temporal variations at specific sites, InSAR gives information about the spatial variation in deformation, periodic GNSS provides information at additional spatial locations but at limited points in time, and levelling extends the time series several decades into the past. Subsidence rates approaching 30 mm/yr are found near an open cut mining pit, but the deformation is non-linear in time and space across the study area, adding to the challenge of modelling the deformation where the geodetic observations are sparse. An important outcome of the project is to determine which types of observations best constrain the deformation model and how much new data is required.</p>


2020 ◽  
Vol 14 (2) ◽  
pp. 133-148
Author(s):  
Nestoras Papadopoulos ◽  
Melissinos Paraskevas ◽  
Ioannis Katsafados ◽  
Georgios Nikolaidis ◽  
Euagelos Anagnostou

AbstractHellenic Military Geographical Service (HMGS) has established and measured various networks in Greece which constitute the geodetic infrastructure of the country. One of them is the triangulation network consisting of about 26.000 pillars all over Greece. Classical geodetic measurements that held by the Hellenic Military Geographic Service (HMGS) through the years have been used after adjustment for the state reference frame which materializes the current Hellenic Geodetic Reference System of 1987 (HGRS87). The aforementioned Reference System (RS) is a static one and is in use since 1990. Through the years especially in the era of satellite navigation systems many Global Navigation Satellite System (GNSS) networks have been established. The latest such network materialized by HMGS is ongoing and covers until now more than the 2/3 of the country. It is referenced by International GNSS Service (IGS) permanent stations and consists a local densification IGS08 Reference Frame. Firstly, this gives the opportunity to calculate transformation parameters between the two systems and a statistical analysis of the residuals leads to intermediate conclusions. After that and in conjunction with existing past transformations, tectonic deformations and their directions are concluded. Moreover past GPS observations on the same pillars in compare to the newer ones give also a sense of tectonic displacements. Greece is one of the most tectonically active countries in Europe and the adoption of a modern kinematic or semi-kinematic geodetic datum is a necessity as it should incorporate a deformation model like 3d velocities on the reference frame realization. The detection of geodynamic changes is a continuous need and should be taken into consideration at each epoch.


2020 ◽  
Author(s):  
Kwo-Hwa Chen ◽  
Kuo-En Ching ◽  
Ray Y. Chuang ◽  
Ming Yang ◽  
He-Chin Chen

<p>Taiwan’s current horizontal coordinate system, TWD97[2010], is a static geodetic datum located at the boundary between Eurasian and Philippine Sea plates. Due to the relative motions between different plates, the accuracy of TWD97[2010] has been constantly decreasing. To maintain the internal accuracy of a national coordinate system at a high level, establishing a semi-kinematic reference frame is a practical solution. The semi-kinematic reference frame includes a static datum and a surface deformation model that is composed of velocity grid models and displacement grid models. In this study, observations of 437 continuous GNSS stations from January 2003 to December 2019 were adopted to estimate the horizontal velocity fields in Taiwan. We also integrated twelve horizontal velocity fields between 2003 and 2018 from 785 campaign-mode GNSS sites surveyed by the Central Geological Survey to derive the horizontal grid velocity models using the Kriging spatial interpolation method. Six coseismic displacement grid models from 2010 to 2018 were constructed using the dislocation model based on published coseismic source models. Independent GNSS observations of 1400 stations collected by the National Land Surveying and Mapping Center (NLSC) between 2013 and 2018 were also used for exterior checking on the accuracy of the surface deformation model. In addition, the network-based RTK system in Taiwan established by NLSC, named e-GNSS, is proposed to be used for assessing the accuracy of the velocity model and for the decision on the timing of velocity model renewal.</p>


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
P. Häkli ◽  
M. Lidberg ◽  
L. Jivall ◽  
T. Nørbech ◽  
O. Tangen ◽  
...  

AbstractThe NKG 2008 GPS campaign was carried out in September 28 – October 4, 2008. The purpose was to establish a common reference frame in the Nordic- Baltic-Arctic region, and to improve and update the transformations from the latest global ITRF reference frame to the national ETRS89 realizations of the Nordic/Baltic countries. Postglacial rebound in the Fennoscandian area causes intraplate deformations up to about 10 mm/yr to the Eurasian tectonic plate which need to be taken into account in order to reach centimetre level accuracies in the transformations. We discuss some possible alternatives and present the most applicable transformation strategy. The selected transformation utilizes the de facto transformation recommended by the EUREF but includes additional intraplate corrections and a new common Nordic-Baltic reference frame to serve the requirements of the Nordic/Baltic countries. To correct for the intraplate deformations in the Nordic-Baltic areawe have used the commonNordic deformation model NKG RF03vel. The new common reference frame, NKG ETRF00, was aligned to ETRF2000 at epoch 2000.0 in order to be close to the national ETRS89 realizations and to coincide with the land uplift epoch of the national height systems. We present here the realization of the NKG ETRF00 and transformation formulae together with the parameters to transform from global ITRF coordinates to Nordic/Baltic realizations of the ETRS89.


Sign in / Sign up

Export Citation Format

Share Document