scholarly journals Biomechanical asymmetries persist after ACL reconstruction: results of a 2-year study

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Fatemeh Sharafoddin-Shirazi ◽  
Amir Letafatkar ◽  
Jennifer Hogg ◽  
Vahid Saatchian

Abstract Purpose This study was aimed to examine longitudinal (6, 12, 18, 24 months) asymmetries in double-leg landing kinetics and kinematics of subjects with and without unilateral ACLR. Methods Three-dimensional kinematic and kinetic parameters of 40 participants (n = 20 post-ACLR, n = 20 healthy) were collected with a motion analysis system and force plate during a drop-landing task, and asymmetry indices were compared between groups. Results The asymmetry index (AI) in the ACLR group compared to the healthy group decreased from six to 24 months for vertical ground reaction force (vGRF) from 100% to 6.5% and for anterior posterior ground reaction force (a-pGRF) from 155.5% to 7%. Also, the AI decreased for peak hip flexion moment from 74.5% to 17.1%, peak knee flexion moment from 79.0% to 5.8% and peak ankle dorsiflexion moment from 59.3% to 5.9%. As a further matter, the AI decreased for peak hip abduction moment from 67.8% to 5.1%, peak knee adduction moment from 55.7% to 14.8% and peak knee valgus angle from 48.7% to 23.5%. Conclusions Results obtained from this longitudinal study showed that ACLR patients still suffer from limb asymmetries during landing tasks, which appear to normalize by 24-monthspost-surgery. This finding can help us to better understand biomechanics of the limbs after ACLR, and design more efficient post-surgery rehabilitation programs. Level of evidence Level III.

2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0020 ◽  
Author(s):  
Irene Davis ◽  
Todd Hayano ◽  
Adam Tenforde

Category: Other Introduction/Purpose: While the etiology of injuries is multifactorial, impact loading, as measured by the loadrate of the vertical ground reaction force has been implicated. These loadrates are typically measured with a force plate. However, this limits the measure of impacts to laboratory environments. Tibial acceleration, another measure of running impacts, is considered a surrogate for loadrate. It can be measured using new wearable technology that can be used in a runner’s natural environment. However, the correlation between tibial acceleration measured from mobile devices and vertical ground reaction force loadrates, measured from forceplates, is unknown. The purpose of this study was to determine the correlation between vertical and resultant loadrates to vertical and resultant tibial acceleration across different footstrike patterns (FSP) in runners. Methods: The study involved a sample of convenience made up of 169 runners (74 F, 95 M; age: 38.66±13.08 yrs) presenting at a running injury clinic. This included 25 habitual forefoot strike (FFS), 17 midfoot strike (MFS) and 127 rearfoot strike (RFS) runners. Participants ran on an instrumented treadmill (average speed 2.52±0.25 m/s), with a tri-axial accelerometer attached at the left distal medial tibia. Only subjects running with pain <3/10 on a VAS scale during the treadmill run were included to reduce the confounding effect of pain. Vertical average, vertical instantaneous and resultant instantaneous loadrates (VALR, VILR and RILR) and peak vertical and resultant tibial accelerations (VTA, RTA) were averaged for 8 consecutive left steps. Correlation coefficients (r) were calculated between tibial accelerations and loadrates. Results: All tibial accelerations were significantly correlated across all loadrates, with the exception of RTA with VILR for FFS (Table 1) which was nearly significant (p=0.068). Correlations ranged from 0.37-0.82. VTA was strongly correlated with all loadrates (r = 0.66). RTA was also strongly correlated with both loadrates for RFS and MFS, but only moderately correlated with loadrates for FFS (r = 0.47). Correlations were similar across the different loadrates (VALR, VILR, RILR). Conclusion: The stronger correlation between vertical tibial acceleration and all loadrates (VALR, VILR, RILR) suggests that it may be the best surrogate for loadrates when studying impact loading in runners.


2015 ◽  
Vol 28 (3) ◽  
pp. 459-466
Author(s):  
Giulia Pereira ◽  
Aluísio Otavio Vargas Avila ◽  
Rudnei Palhano

AbstractIntroduction Footwear is no longer just an accessory but also a protection for the musculoskeletal system, and its most important characteristic is comfort.Objectives This study aims to identify and to analyze the vertical ground reaction force in barefoot women and women with unstable shoes.Methodology Five women aged 25 ± 4 years old and mass of 50 ± 7 kg participated in this study. An AMTI force plate was used for data acquisition. The 10 trials for each situation were considered valid where the subject approached the platform with the right foot and at the speed of 4 km/h ± 5%. The instable shoe of this study is used in the practice of physical activity.Results The results showed that the first peak force was higher for the footwear situation, about 5% and significant differences between the barefoot and footwear situation. This significant difference was in the first and second peaks force and in the time of the second peak.Conclusion The values showed that the footwear absorbs approximately 45% of the impact during gait.


2021 ◽  
Vol 80 (1) ◽  
pp. 19-27
Author(s):  
Alfonso Vargas-Macías ◽  
Irene Baena-Chicón ◽  
Joanna Gorwa ◽  
Robert A. Michnik ◽  
Katarzyna Nowakowska-Lipiec ◽  
...  

Abstract Footwork is one of the basic features of flamenco dancing and is performed in traditional high-heeled shoes. The purpose of this study was to analyse the mechanical profile of flamenco dancing in terms of vertical ground reaction force, and knee joint kinematics of the supporting limb in footwork technique in order to understand causes which predispose injuries derived from the practice of flamenco dancing. The participant in our study was a professional female flamenco dancer (34 years, 58 kg, 1.65 m) who performed the ZAP 3 test, a sequence of single strikes of the feet performed continuously for 15 s. 3D lower extremity kinematic data were collected using a five-camera motion analysis system (Vicon; Oxford Metrics Ltd., Oxford, UK). Ground reaction forces were recorded using a Kistler force plate. Our analysis was based on 30 cycles of each lower limb consisting of 177 footwork steps. The vertical component of the ground reaction force did not reveal any significant differences between the left and the right limb. The most dynamic strike was provided by the heel (twice the participant's body weight). The mean angular displacement of the supporting limb’s knee was ~27°. Results reveal that these impacts could make the knee joint more prone to injuries.


2020 ◽  
Vol 29 (8) ◽  
pp. 1069-1074
Author(s):  
Aiko Sakurai ◽  
Kengo Harato ◽  
Yutaro Morishige ◽  
Shu Kobayashi ◽  
Yasuo Niki ◽  
...  

Context: Toe direction is an important factor affecting knee biomechanics during various movements. However, it is still unknown whether toe direction will affect trunk and pelvic movements. Objective: To examine and clarify the effects of toe directions on biomechanics of trunk and pelvis as well as lower-extremities during single-leg drop landing (SLDL). Design: Descriptive laboratory study. Setting: Research laboratory. Participants: A total of 27 male recreational-level athletes. Intervention(s): Subjects performed SLDL under 3 different toe directions, including 0° (toe neutral), 20° (toe-in [TI]), and −20° (toe-out). SLDL was captured using a motion analysis system. Nondominant leg (27 left) was chosen for the analysis. Main Outcome Measures: Peak values of kinematic and kinetic parameters during landing phase were assessed. In addition, those parameters at the timing of peak vertical ground reaction force were also assessed. The data were statistically compared among 3 different toe directions using 1-way repeated measures of analysis of variance or Friedman χ2 r test. Results: Peak knee abduction angle and moment in TI were significantly larger than in toe neutral and toe-out (P < .001). Moreover, peak greater anterior inclination, greater inclination, and rotation of trunk and pelvis toward the nonlanding side were seen in TI (P < .001). At the timing of peak vertical ground reaction force, trunk inclined to the landing side with larger knee abduction angle in TI (P < .001). Conclusions: Several previous studies suggested that larger knee abduction angle and moment on landing side as well as trunk and pelvic inclinations during landing tasks were correlated with knee ligament injury. However, it is still unknown concerning the relationship between toe direction and trunk/pelvis movements during landing tasks. From the present study, TI during SLDL would strongly affect biomechanics of trunk and pelvis as well as knee joint, compared with toe neutral and toe-out.


2016 ◽  
Vol 16 (02) ◽  
pp. 1650009
Author(s):  
MOHAMMAD TAGHI KARIMI ◽  
MAHSA KAVYANI ◽  
FRANCIS FATOYE ◽  
EBRAHIM SADEGHI DAMNEH ◽  
MOHAMMAD REZA ETEMADIFAR

Background: Adolescent Idiopathic Scoliosis (AIS) leads to change between body segments, right-left trunk symmetry and produce pathological gait pattern. The influence of trunk bracing on symmetry of ground reaction force components and loading rate on idiopathic scoliosis has not been well documented. Therefore, the aim of this study was to examine the effect of trunk bracing on symmetry of forces in adolescent with idiopathic scoliosis. Method: A total of 10 patients with AIS and 10 healthy subjects with comparable age, height and weight were recruited in this study. The force applied on the right and left sides in both groups of subjects were recorded by use of a Kistler force plate while walking. The peak of the vertical force (the first and second peaks) and the force applied on the leg in anteroposterior direction (progression and breaking forces) and mediolateral force were collected in this study. Results: The results of this study showed that there was a significant difference between the asymmetry index of anteroposterior force of normal and scoliotic patients [Formula: see text]. Moreover, trunk bracing decreased asymmetry index of loading rate of scoliotic patients significantly [Formula: see text]. There was no significant difference between the other examined kinetic variables. Conclusion: There are some degrees of asymmetry between the forces applied on the leg in scoliotic subjects. Orthosis decreased the forces applied on the leg in patients with scoliosis. Clinicians are to be aware of these findings as orthotic devices may be of value to patients with idiopathic scoliosis.


2021 ◽  
Vol 76 (1) ◽  
pp. 161-173
Author(s):  
Qiang Zhang ◽  
Mianfang Ruan ◽  
Navrag B. Singh ◽  
Lingyan Huang ◽  
Xin Zhang ◽  
...  

Abstract Few studies have focused on the effect of fatigue severity on landing strategy. This study aimed to investigate the effect of fatigue progression on ground reaction force during landing. Eighteen participants performed a fatigue exercise protocol. Then participants performed drop landings at three levels of fatigue: no fatigue, medium fatigue, and severe fatigue. Multiple linear regression was conducted to identify the predictors of the peak vertical ground reaction force at each level of fatigue. Two-way ANOVAs were conducted to test the effect of fatigue on the vertical ground reaction force and the predictors. For the vertical ground reaction force, the knee joint stiffness and the knee angle at initial contact were the main predictors at no fatigue. The peak knee flexion angle and knee power were the main predictors at medium fatigue. However, the peak ankle plantarflexion moments became the main predictor at severe fatigue. The vertical ground reaction force decreased from no to medium fatigue (p = 0.001), and then increased from medium to severe fatigue (p = 0.034). The knee joint stiffness decreased from no to medium fatigue (p = 0.049), and then remained unchanged from medium to severe fatigue. The peak knee flexion angle increased from no to medium fatigue (p = 0.001), and then slightly decreased from medium to severe fatigue (p = 0.051). The results indicate that fatigue progression causes a transition from stiff to soft landing, and then to stiff landing. Participants used ankle joints more to control the landing intensity at severe fatigue.


1992 ◽  
Vol 05 (02) ◽  
pp. 44-50 ◽  
Author(s):  
D. A. Hulse ◽  
H. A. Hogan ◽  
Margaret Slater ◽  
M. T. Longnecker ◽  
Susan Yanoff

SummaryThe purpose of this study was: to quantitate the peak vertical ground reaction force acting on the forelimbs of dogs as they landed after jumping an obstacle; to compare that force at three heights; and to evaluate factors that may affect vertical ground reaction force. Thirteen military working dogs were studied. A strain gauge force plate was used to measure force. Three measurements were recorded for each dog at each height. The means of the medians of the three forces for each dog at each height were compared using a repeated measures analysis of variance. Mean force at 63 cm was 986.9 ± 221.5 N, mean force at 79 cm was 1175.0 ±227.4 N, and mean force at 94 cm was 1366.1± 268.5 N. There was a significant difference in mean force at the three jump heights (p = 0.0002). The significance was unchanged when force was normalized for body weight. Statistical models were used to evaluate the effect of other independent variables. Factors that were found to effect force were body weight, breed, and sex of the dog. Further studies are needed to determine the clinical significance of these findings.Vertical ground reaction force was measured in thirteen dogs landing on a force plate after jumping an obstacle. Three readings were taken for each dog at each of three heights, and the mean vertical ground reaction force was compared. Force readings were significantly different at each height, increasing as height increased. Factors that were found to effect vertical ground reaction force were body weight, breed, and sex.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4345 ◽  
Author(s):  
Xianta Jiang ◽  
Christopher Napier ◽  
Brett Hannigan ◽  
Janice J. Eng ◽  
Carlo Menon

The vertical ground reaction force (vGRF) and its passive and active peaks are important gait parameters and of great relevance for musculoskeletal injury analysis and prevention, the detection of gait abnormities, and the evaluation of lower-extremity prostheses. Most currently available methods to estimate the vGRF require a force plate. However, in real-world scenarios, gait monitoring would not be limited to a laboratory setting. This paper reports a novel solution using machine learning algorithms to estimate the vGRF and the timing and magnitude of its peaks from data collected by a single inertial measurement unit (IMU) on one of the lower limb locations. Nine volunteers participated in this study, walking on a force plate-instrumented treadmill at various speeds. Four IMUs were worn on the foot, shank, distal thigh, and proximal thigh, respectively. A random forest model was employed to estimate the vGRF from data collected by each of the IMUs. We evaluated the performance of the models against the gold standard measurement of the vGRF generated by the treadmill. The developed model achieved a high accuracy with a correlation coefficient, root mean square error, and normalized root mean square error of 1.00, 0.02 body weight (BW), and 1.7% in intra-participant testing, and 0.97, 0.10 BW, and 7.15% in inter-participant testing, respectively, for the shank location. The difference between the reference and estimated passive force peak values was 0.02 BW and 0.14 BW with a delay of −0.14% and 0.57% of stance duration for the intra- and inter-participant testing, respectively; the difference between the reference and estimated active force peak values was 0.02 BW and 0.08 BW with a delay of 0.45% and 1.66% of stance duration for the intra- and inter-participant evaluation, respectively. We concluded that vertical ground reaction force can be estimated using only a single IMU via machine learning algorithms. This research sheds light on the development of a portable wearable gait monitoring system reporting the real-time vGRF in real-life scenarios.


2020 ◽  
Vol 55 (7) ◽  
pp. 717-723 ◽  
Author(s):  
Derek R. Dewig ◽  
Jonathan S. Goodwin ◽  
Brian G. Pietrosimone ◽  
J. Troy Blackburn

Context Anterior cruciate ligament (ACL) injury risk can be assessed from landing biomechanics. Greater hamstrings stiffness is associated with a landing-biomechanics profile consistent with less ACL loading but is difficult to assess in the clinical setting. Eccentric hamstrings strength can be easily evaluated by clinicians and may provide a surrogate measure for hamstrings stiffness. Objective To examine associations among eccentric hamstrings strength, hamstrings stiffness, and landing biomechanics linked to ACL injury risk. Design Cross-sectional study. Setting Research laboratory. Patients or Other Participants A total of 34 uninjured, physically active participants (22 women, 12 men; age = 20.2 ± 1.6 years, height = 171.5 ± 9.7 cm, mass = 67.1 ± 12.7 kg). Intervention(s) We collected eccentric hamstrings strength, active hamstrings stiffness, and double- and single-legged landing biomechanics during a single session. Main Outcome Measure(s) Bivariate associations were conducted between eccentric hamstrings strength and hamstrings stiffness, vertical ground reaction force, internal knee-extension moment, internal knee-varus moment, anterior tibial shear force, knee sagittal-plane angle at initial ground contact, peak knee-flexion angle, knee frontal-plane angle at initial ground contact, peak knee-valgus angle, and knee-flexion displacement using Pearson product moment correlations or Spearman rank-order correlations. Results We observed no association between hamstrings stiffness and eccentric hamstrings strength (r = 0.029, P = .44). We also found no association between hamstrings stiffness and landing biomechanics. However, greater peak eccentric strength was associated with less vertical ground reaction force in both the double-legged (r = −0.331, P = .03) and single-legged (r = −0.418, P = .01) landing conditions and with less internal knee-varus moment in the single-legged landing condition (r = −0.326, P = .04). Conclusions Eccentric hamstrings strength was associated with less vertical ground reaction force during both landing tasks and less internal knee-varus moment during the single-legged landing but was not an acceptable clinical estimate of active hamstrings stiffness.


Sign in / Sign up

Export Citation Format

Share Document