scholarly journals Natural and experimental high-pressure, shock-produced terrestrial and extraterrestrial materials

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Masaaki Miyahara ◽  
Naotaka Tomioka ◽  
Luca Bindi

AbstractHypervelocity impacts are among the fundamental phenomena occurring during the evolution of the solar system and are characterized by instantaneous ultrahigh pressure and temperature. Varied physicochemical changes have occurred in the building blocks of celestial bodies under such extreme conditions. The constituent material has transformed into a denser form, a high-pressure polymorph. The high-pressure polymorph is also thought to be the constituent of the deep Earth’s interior. Hence, experiments using a high-pressure and temperature generating apparatus have been conducted to clarify its crystal structure, pressure–temperature stability range, and transformation mechanisms. A natural high-pressure polymorph (mineral) is found from terrestrial and extraterrestrial rocks that experienced a hypervelocity impact. Mineralogists and planetary scientists have investigated high-pressure minerals in meteorites and rocks near terrestrial craters over a half-century. Here, we report brief reviews about the experiments producing high-pressure polymorphs and then summarize the research histories of high-pressure minerals occurring in shocked meteorites and rocks near terrestrial craters. Finally, some implications of high-pressure minerals found in impact-induced shocked rocks are also mentioned. Graphic abstract

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1321
Author(s):  
Tomasz K. Pietrzak ◽  
Marek Wasiucionek ◽  
Jerzy E. Garbarczyk

This review article presents recent studies on nanostructured glass-ceramic materials with substantially improved electrical (ionic or electronic) conductivity or with an extended temperature stability range of highly conducting high-temperature crystalline phases. Such materials were synthesized by the thermal nanocrystallization of selected electrically conducting oxide glasses. Various nanostructured systems have been described, including glass-ceramics based on ion conductive glasses (silver iodate and bismuth oxide ones) and electronic conductive glasses (vanadate-phosphate and olivine-like ones). Most systems under consideration have been studied with the practical aim of using them as electrode or solid electrolyte materials for rechargeable Li-ion, Na-ion, all-solid batteries, or solid oxide fuel cells. It has been shown that the conductivity enhancement of glass-ceramics is closely correlated with their dual microstructure, consisting of nanocrystallites (5–100 nm) confined in the glassy matrix. The disordered interfacial regions in those materials form “easy conduction” paths. It has also been shown that the glassy matrices may be a suitable environment for phases, which in bulk form are stable at high temperatures, and may exist when confined in nanograins embedded in the glassy matrix even at room temperature. Many complementary experimental techniques probing the electrical conductivity, long- and short-range structure, microstructure at the nanometer scale, or thermal transitions have been used to characterize the glass-ceramic systems under consideration. Their results have helped to explain the correlations between the microstructure and the properties of these systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hitesh Agarwal ◽  
Bernat Terrés ◽  
Lorenzo Orsini ◽  
Alberto Montanaro ◽  
Vito Sorianello ◽  
...  

AbstractElectro-absorption (EA) waveguide-coupled modulators are essential building blocks for on-chip optical communications. Compared to state-of-the-art silicon (Si) devices, graphene-based EA modulators promise smaller footprints, larger temperature stability, cost-effective integration and high speeds. However, combining high speed and large modulation efficiencies in a single graphene-based device has remained elusive so far. In this work, we overcome this fundamental trade-off by demonstrating the 2D-3D dielectric integration in a high-quality encapsulated graphene device. We integrated hafnium oxide (HfO2) and two-dimensional hexagonal boron nitride (hBN) within the insulating section of a double-layer (DL) graphene EA modulator. This combination of materials allows for a high-quality modulator device with high performances: a ~39 GHz bandwidth (BW) with a three-fold increase in modulation efficiency compared to previously reported high-speed modulators. This 2D-3D dielectric integration paves the way to a plethora of electronic and opto-electronic devices with enhanced performance and stability, while expanding the freedom for new device designs.


Author(s):  
Mahmoud I. Hussein ◽  
Gregory M. Hulbert ◽  
Richard A. Scott

Within periodically heterogeneous materials and structures, wave scattering and dispersion occur across constituent material interfaces leading to a banded frequency response. A novel multiscale dispersive design methodology is presented by which periodic unit cells are designed for desired frequency band structures, and are used as building blocks for forming fully or partially periodic structures, typically at larger length scales. Structures resulting from this hierarchical design approach are tailored to desired dynamical characteristics without the necessity for altering the overall geometric shape of the structure nor employing dissipative damping materials. Case studies are presented for shock isolation and frequency sensing.


Mineralogy ◽  
2020 ◽  
pp. 39-48
Author(s):  
Meng Dawei ◽  
Wu Xiuling ◽  
Han Yujing ◽  
Liu Rong

2015 ◽  
Author(s):  
Marcin Cybulski ◽  
Adam Formela ◽  
Katarzyna Sidoryk ◽  
Olga Michalak ◽  
Anna Rosa ◽  
...  

One of the anthraquinone classes comprises compounds with a carbonyl group. These natural or synthetic anthraquinones find their application as building blocks in the synthesis of the compounds with a biological activity. Recently, 4-substituted anthra-9,10-quinone-1-carboxylic acids (2) have been used as key intermediates in the synthesis of patented compounds (3) with anticancer activity against multidrug resistant cell lines. Although 2,7-dihydro-3H-dibenz[de,h]cinnolin-3,7-diones (3) were successfully synthetized in a small laboratory scale, several problems were observed during the preparation of their acid intermediates (2) in a multi-gram scale. The known methods for the preparation of 2 are based on the oxidation of the methyl group in anthra-9,10-quinones (1). The most common are: the oxidation with the diluted nitric acid under high pressure in a sealed tube at the temperature of 195-220 oC, the oxidation in nitrobenzene by passing chlorine gas through the reaction mixture at the temperature of 160-170 oC or in a presence of the fuming sulphuric acid. The mentioned methods require aggressive reagents and specific reaction conditions including high pressure and temperature. Thus, there was a need to find a new efficient, cost-effective and reproducible synthetic method of preparation of 2. While searching literature it was found that the direct oxidation of alkylarenes mediated by the sodium periodate/lithium bromide combination produces benzyl acetates throughout benzyl bromides in the acetic acid, or benzylic acids in the diluted inorganic acid. Based on these results we examined a variety of reaction conditions with or without the bromine source and the oxidizing anion. As a result, a novel procedure for the preparation of highly pure 4-substituted anthra-9,10-quinone-1-carboxylic acids (HPLC > 99.5%) using oxidizing anion/ brominating reagent system was developed. It enabled 2 isolation by the simple filtration of the reaction mixture and was applied in the scale-up of 2,7-dihydro-3H-dibenz[de,h]cinnolin-3,7-dione derivatives.


2019 ◽  
Vol 159 ◽  
pp. 428-431 ◽  
Author(s):  
Peifang Li ◽  
Tingting Mei ◽  
Zhiwen Lu ◽  
Lian Xiang ◽  
Xin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document