scholarly journals 2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hitesh Agarwal ◽  
Bernat Terrés ◽  
Lorenzo Orsini ◽  
Alberto Montanaro ◽  
Vito Sorianello ◽  
...  

AbstractElectro-absorption (EA) waveguide-coupled modulators are essential building blocks for on-chip optical communications. Compared to state-of-the-art silicon (Si) devices, graphene-based EA modulators promise smaller footprints, larger temperature stability, cost-effective integration and high speeds. However, combining high speed and large modulation efficiencies in a single graphene-based device has remained elusive so far. In this work, we overcome this fundamental trade-off by demonstrating the 2D-3D dielectric integration in a high-quality encapsulated graphene device. We integrated hafnium oxide (HfO2) and two-dimensional hexagonal boron nitride (hBN) within the insulating section of a double-layer (DL) graphene EA modulator. This combination of materials allows for a high-quality modulator device with high performances: a ~39 GHz bandwidth (BW) with a three-fold increase in modulation efficiency compared to previously reported high-speed modulators. This 2D-3D dielectric integration paves the way to a plethora of electronic and opto-electronic devices with enhanced performance and stability, while expanding the freedom for new device designs.

2020 ◽  
Author(s):  
Hitesh Agarwal ◽  
Bernat Terrés ◽  
Lorenzo Orsini ◽  
Alberto Montanaro ◽  
Vito Sorianello ◽  
...  

Abstract Electro-absorption (EA) waveguide-coupled modulators are essential building blocks for on-chip optical communications. Compared to state-of-the-art silicon (Si) devices, graphene based EA modulators promise smaller footprints, larger temperature stability, cost-effective integration and high speeds. However, combining high speed and large modulation efficiencies in a single graphene-based device has remained elusive so far. In this work, we overcome this fundamental trade-off by demonstrating the first 2D-3D dielectric integration in a high-quality encapsulated graphene device. We integrated hafnium oxide (HfO2) and two-dimensional hexagonal boron nitride (hBN) within the insulating section of a double-layer (DL) graphene EA modulator. This novel combination of materials allows for a high-quality modulator device with record high performances: a ∼39GHz bandwidth (BW) with a three-fold increase in modulation efficiency compared to previously reported high speed modulators. This first demonstration of 2D-3D integration paves the way to a plethora of electronic and opto-electronic devices with enhanced performance and stability, while expanding the freedom for new device designs.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 222
Author(s):  
Pervaiz Ahmad ◽  
Mayeen Uddin Khandaker ◽  
Fida Rehman ◽  
Nawshad Muhammad ◽  
Mohammad Rashed Iqbal Faruque ◽  
...  

The interesting properties of hexagonal boron nitride (h-BN) and its potential uses in thermo-structural advanced applications have been limited or restricted by its inherent brittleness, which can easily be eliminated by its fibers (h-BN) in nanoscale dimensions. The current study is based on the synthesis of nanoscale 10B-enriched fibers of h-BN (10BNNFs) from 10B in the precursors instead of B in two-hour annealing at 900 °C and one-hour growth at 1000 °C. All of the 10BNNFs are randomly curved and highly condensed or filled from 10h-BN species with no internal space or crack. XRD peaks reported the 10h-BN phase and highly crystalline nature of the synthesized 10BNNFs. 10h-BN phase and crystalline nature of 10BNNFs are confirmed from high-intensity peaks at 1392 (cm−1) in Raman and FTIR spectroscopes.


2021 ◽  
Vol 13 (39) ◽  
pp. 47283-47292
Author(s):  
Yongliang Chen ◽  
Chi Li ◽  
Simon White ◽  
Milad Nonahal ◽  
Zai-Quan Xu ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Yifei Li ◽  
Xin Wen ◽  
Changjie Tan ◽  
Ning Li ◽  
Ruijie Li ◽  
...  

Owing to its irreplaceable roles in new functional devices, such as universal substrates and excellent layered insulators, high-quality hexagonal BN (hBN) crystals are exceedingly required in the field of two-dimensional...


2019 ◽  
Vol 100 (15) ◽  
Author(s):  
Brian Shevitski ◽  
S. Matt Gilbert ◽  
Christopher T. Chen ◽  
Christoph Kastl ◽  
Edward S. Barnard ◽  
...  

Nano Letters ◽  
2012 ◽  
Vol 12 (2) ◽  
pp. 714-718 ◽  
Author(s):  
Kang Hyuck Lee ◽  
Hyeon-Jin Shin ◽  
Jinyeong Lee ◽  
In-yeal Lee ◽  
Gil-Ho Kim ◽  
...  

ACS Nano ◽  
2011 ◽  
Vol 5 (9) ◽  
pp. 7303-7309 ◽  
Author(s):  
Peter Sutter ◽  
Jayeeta Lahiri ◽  
Peter Albrecht ◽  
Eli Sutter

2018 ◽  
Author(s):  
Łukasz Krych ◽  
Josué L. Castro-Mejía ◽  
Daniel N. Moesby ◽  
Morten B. Mikkelsen ◽  
Morten A. Rasmussen ◽  
...  

AbstractDespite the massive developments within culture-independent methods for detection and quantification of microorganisms during the last decade, culture-based methods remain a cornerstone in microbiology. We have developed a new method for bacterial DNA enrichment and tagmentation allowing fast (< 24h) and cost-effective species level identification and strain level differentiation using the MinION portable sequencing platform (ON-rep-seq). DNA library preparation takes less than 5h and ensures highly reproducible distribution of reads that can be used to generate strain level specific read length counts profiles (LCp). We have developed a pipeline that by correcting the random error of reads within peaks of LCp generates a set (∼10 contigs per sample; 300bp - 3Kb) of high quality (>99%) consensus reads. Whereas, the information from high quality reads is used to retrieve species level taxonomy, comparison of LCp allows for strain level differentiation. With benchmarked 288 isolates identified on a single flow cell and a theoretical throughput to evaluate over 1000 isolates, our method allows for detailed bacterial identification for less than 2$ per sample at very high speed.


2020 ◽  
Author(s):  
Ramkumar Balasubramanian ◽  
Sohini Pal ◽  
Anjana Rao ◽  
Akshay Naik ◽  
Banani Chakraborty ◽  
...  

Cost effective, fast and reliable DNA sequencing can be enabled by advances in nanopore based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal Boron Nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3-10x lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.


Sign in / Sign up

Export Citation Format

Share Document